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A B S T R A C T

Limited reading skills are a severe impediment for participation in
our information-based society. Automatic text simplification has been
suggested as an assistive technology to improve accessibility, but pre-
vious research has largely neglected variation between individual
users and has suggested an objective notion of what makes text diffi-
cult and what does not.

However, as attested by previous research, readers perceive text dif-
ficulty individually and subjectively. Text simplification systems that
assume general solutions and do not adjust to their individual users
therefore cannot provide optimal solutions to the individual user, or
by extension to the entire usership. Their potential is bound by the
degree to which the target audience displays different simplification
needs.

As a response, this thesis presents work that aims to integrate user
information into the text simplification workflow, thus personalizing
text simplification. This goal is pursued in two ways: (i) making it
possible for users to state explicit simplification needs and prefer-
ences which the system, trained once on a static dataset, can then
focus on at production time, and (ii) enabling a simplification model
to learn from high-level user feedback and behavioral data in order to
update its beliefs of a user’s literacy profile. As an additional line of
work, this thesis explores ways to build robust simplification models
from limited training data, sharing information between smaller data
sources through multi-task learning.

This work marks the first major effort to the development of text
simplification systems that integrate information about individual
users and adapt to their specific simplification needs. In personal-
izing text simplification, this user-focused technology can overcome
existing upper bounds of performance and improve accessibility for
weak readers.



A B S T R A C T I N D A N I S H – R E S U M É PÅ D A N S K

Begrænsede læsefærdigheder er en alvorlig forhindring for at delta-
ge i vores informationssamfund. Automatisk tekstsimplificering er et
hjælpeværktøj der øger tilgængeligheden. Tidligere forskning har ik-
ke taget individuelle hensyn til hvad der opleves som svært, men
arbejder med objektive definitioner.

Men tidligere forskning viser, at sværhedsgraden af en tekst ople-
ves individuelt og subjektivt. Tekstsimplificeringssystemer, som er un-
derlagt antagelsen af én fælles løsning og ikke tager individuelle hen-
syn, leverer ikke den bedste løsning til den enkelte og dermed heller
ikke til den samlede brugergruppe. Succesen af sådanne systemer af-
hænger af hvor forskellige målgruppens tekstsimplificeringsbehov er.

Derfor præsenterer denne afhandling arbejde hvor brugerinforma-
tion bliver integreret i tekstsimplificeringsmodellerne hvilket medfø-
rer individuel tekstsimplificering. Der er arbejdet med følgende løs-
ninger: (i) at gøre det muligt for brugerne at give eksplicit udtryk for
deres tekstsimplificeringsbehov og -præferencer som systemet, der el-
lers er trænet på det samme datasæt, kan tage udgangspunkt i, når
systemet bruges og (ii) at anvende en simplificeringsmodel der lærer
fra high-level brugerfeedback og brugerinput til at opdatere en mo-
del af en brugers læsefærdighedsprofil. I et andet spor undersøger
denne afhandling måder at bygge robuste simplificeringsmodeller fra
begrænsede mængder træningsdata ved at dele træningsdata fra flere
mindre ressourcer igennem multi-task learning.

Dette arbejde bidrager til udviklingen af tekstsimplificeringssyste-
mer som integrerer information om den enkelte bruger og tilpasser
sig dennes simplificeringsbehov. Ved at individualisere tekstsimplifi-
cering er en brugertilpasset teknologi ikke underlagt en øvre resultat-
grænse, som er betinget af forskelle mellem brugerne, og kan dermed
øge tilgængeligheden for mennesker med læsevanskeligheder.



S U M M A RY I N S I M P L E E N G L I S H

People with weak reading skills have problems in finding jobs or
reading important letters. Automatic text simplification can help to
make text easier to read. For example, it can replace difficult words
with simple words. But often, simplification programs do not know
what is difficult for an individual.

This is a problem, because different people find different things
difficult. If the program thinks that everybody has the same problems,
it cannot work very well for a specific individual.

This book describes how text simplification can become better for
specific individuals. For example, users can tell the program what
they find very difficult. Then, the program can focus on these pro-
blems. This book also describes how the program can learn from the
user. The user can say if they think the program is doing well. Then,
the program can find out what the user finds difficult.

This is the first work to create simplification programs for indivi-
dual readers. This can make it easier for many people to understand
texts.
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Taking things for granted is a terrible disease.
We should all be checking ourselves regularly for signs of it.

— Kate Tempest, Hold Your Own
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Part I

B A C K G R O U N D





1
I N T R O D U C T I O N

1.1 literacy and accessibility

About 5,000 years ago, somewhere in ancient Mesopotamia, humans
invented a system of documenting, preserving and transmitting in-
formation in the form of script. Writing enabled people to encode in-
formation they naturally transmit in speech in a permanent medium.
Conversely, this information could now be decoded through the act
of reading, that is the translation of abstract symbols engraved into
stone or drawn on papyrus or canvas into any sort of information they
would normally receive through auditory means. These 5,000 years of
reading and writing have massively transformed many aspects of hu-
man culture and civilization. Relatively recent developments such as
globalization and digitization, in particular, would hardly or not at
all be possible without our ability to store, multiply, manipulate and
receive information we would otherwise only be able to communicate
transiently and only within our immediate radius.

From the perspective of human evolution, however, literacy is a
very recent development that has hardly had any time to manifest
itself in our biological legacy. If 5,000 years seems like a short time
for genetic change, the period in which it has been a societal – and
ultimately evolutionary – advantage to read and write hardly exceeds
a couple of generations in most cultures. And even in those where it
does, only a small fraction of the population has been literate for
more than 200 years (Buringh and Van Zanden, 2009). Reading has
been a cultural technique historically commanded by select members
of a society, rather than a survival strategy necessary for everyone.

Consequently, reading is a skill that is nowhere near innateness. In-
stead, in order to acquire it, most of us train almost daily for a period
of several years at an age where we are most susceptible to new in-
tellectual challenges. Yet, despite the efforts many governments and
societies have invested in literacy training via public schooling over
the last centuries, many learners never make it past basic reading
skills. In many cases, this is not due to bad or insufficient teaching,
or to a lack of motivation and dedication on the learner’s part, but to
neurological conditions such as dyslexia, aphasia, autism and others.
Dyslexia, in particular, is a highly prevalent learning disability that
manifests as an increased difficulty in reading, especially learning
the mapping between sounds and letters and decoding written mate-
rial into otherwise familiar words, despite normal intelligence. Con-
sequently, people with dyslexia experience difficulties in fluent and
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accurate reading and text comprehension as well as spelling. Dyslexia
can be present from birth or develop through environmental factors
(Peterson and Pennington, 2015). Estimates of its prevalence differ
widely and are subject to different definitions, but generally range
between 5 and 18 per cent of English native speakers (Peterson and
Pennington, 2015; Interagency Committee on Learning Disabilities,
1987; Shaywitz et al., 1992; Katusic et al., 2001). For other languages,
figures are similar, yet slightly lower for languages with a more di-
rect grapheme-to-phoneme correspondence, such as Italian or Span-
ish (Brunswick, 2010; Carrillo et al., 2011).

While research is ongoing to understand and fight cognitive chal-
lenges such as dyslexia, policy makers and private initiatives have
been implementing policies that promote accessibility to written sour-
ces for low-literacy readers – who comprise, besides people with
learning difficulties, a number of other groups such as second-lan-
guage learners and beginner readers. These policies can most notably
be found in the form of easy language guidelines, which are followed
by different actors to provide easier access to their materials. Exam-
ples include easy-read editions of authorities’ websites and leaflets,
special issues of newswire texts, or literature. 1

The importance of these efforts can hardly be overstated. In present-
day society, literacy has become an indispensable skill. While reading
or writing may not be directly necessary for survival, social secu-
rity and economic independence certainly depend on them – not to
mention higher-level human needs such as societal recognition, and
feelings of accomplishment and self-fulfillment. It is therefore vital to
further promote accessibility and the inclusion of low-literacy readers
into our knowledge-based society.

This forms the primary motivation for automatic text simplifica-
tion, which aims at providing simple versions to some given input
text on demand and within a negligible amount of processing time,
without the need for an expensive and, above all, slow human ex-
pert. The case for simplification and how it relates to accessibility
is explicated further by Siddharthan (2014): difficulty in word recog-
nition entails difficulty in higher level processing due to the overly
high occupation of the working memory (Anderson, 1981; Quigley
and Paul, 1984), such that any effort that facilitates the former can
be expected to lead to overall improvements in reading comprehen-
sion (Mason and Kendall, 1979). This thesis presents and discusses
research in automatic text simplification carried out by the author

1 For an example of an authority website in simple language, see the German gov-
ernment’s website, which offers much of its content in Simple German: https:

//www.bundesregierung.de. Examples of news platforms in simple language in-
clude The Times (http://www.thetimesinplainenglish.com/), German taz (http:
//www.taz.de/!5425192/) and Danish DR Ligetil (https://www.dr.dk/ligetil). A
book publisher specializing in simple language is the Swedish LL-förlaget (http:
//ll-forlaget.se)

https://www.bundesregierung.de
https://www.bundesregierung.de
http://www.thetimesinplainenglish.com/
http:// www.taz.de/!5425192/
http:// www.taz.de/!5425192/
https://www.dr.dk/ligetil
http://ll-forlaget.se
http://ll-forlaget.se
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over the course of three years. The focus, as will be established in the
remainder of this chapter, is on the development of adaptive and per-
sonalized frameworks and models for text simplification. This is in
response to the observation that generic approaches, which assume
homogeneous target populations with consistent simplification needs,
are not generally adequate, given the highly individual perceptions
of word or text difficulty experienced by different end users.

1.2 text simplification : the basics

A common view of text simplification as a research direction in Natu-
ral Language Processing (NLP) is rewriting text such that it becomes
easier to read. In fact, many research papers dedicated to simplifica-
tion begin with this basic definition and, depending on their focus,
include a number of examples that showcase ways in which text can
be simplified (Zhu et al., 2010; Coster and Kauchak, 2011c; De Belder
and Moens, 2010; Paetzold and Specia, 2015; Bingel and Søgaard,
2016). For example, simplifying texts may involve the substitution
of difficult words with easier ones, shortening sentences by removing
peripheral information or splitting them up into several shorter ones,
or replacing pronouns with their referents, among others. The follow-
ing examples, all taken from the professionally edited and simplified
Newsela corpus (Xu et al., 2015), showcase different simplification
strategies, contrasting original sentences with their simplified coun-
terparts. Consider the first example:

(1) a. Even as wolverines rebound, threats loom in their future.

b. Even as wolverines return, they still face threats.

Here, the word rebound has been replaced by return in the simplified
version. This is an instance of lexical simplification, where the syntac-
tic and semantic structure of a sentence or a clause is retained, but
individual words or phrases are exchanged for simpler synonyms.
The part of the original sentence following the comma is slightly
more complex. It is paraphrased as a whole, with the metaphor of
the looming threats being translated into a more literal expression and
a change of focus from the abstract threats to the wolverines. A simi-
lar instance is found in example 2, where an entire phrase is replaced
with an alternative.

(2) a. European leaders cannot agree on how to handle the prob-
lems facing their continent.

b. European leaders are not sure how to handle these problems.

This example highlights a common difficulty in simplification: as in
this case, paraphrases are never perfect synonyms – not being able to
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agree on something is not quite the same as not being sure about it.
In general, supposedly synonymous terms, even when they are equal
or almost equal in their denotation, usually differ at least to some
degree along other dimensions such as formality or other semantic
and pragmatic connotations (Stanojević, 2009).

Another simplification strategy present in example 2 is the omis-
sion of secondary or peripheral sentence material, often in the form of
modifiers such as adverbials. Again, this may entail a more or less se-
vere distortion or loss of information, such that simplification efforts
are faced with the challenge of achieving simplicity while preserving
meaning.

The next example presents a case that rewrites text material of
informal style, which is not generally encountered in text books or
other material consumed by most groups usually targeted in sim-
plification, in particular second-language learners. The simplification
strategy employed in this example is therefore to rewrite the informal
bits of text in a way that is closer to the standard form.

(3) a. Anxiety doesn’t cause the yips, crews say, but it can make
the problem worse.

b. Crews say being nervous can make the problem worse.

In example 3, we also note that the editor resolves the interjected
subject and predicate and moves them to the front of the sentence,
making it easier for the reader to interpret the reported speech as
such. We observe the same simplification strategy in example 4. It
further removes largely peripheral material found in the final clause
of the original sentence, whose pragmatic function supposedly is of
somewhat literary character and therefore secondary in relation to
the main assertion.

(4) a. “This kind of sport is not only popular in Xinjiang , it’s also
pretty popular across China," Jin said, taking a rest from one
of his workouts on a Sunday afternoon.

b. Jin said the sport is popular across China.

In automatic text simplification, the central challenges we face re-
volve around a range of questions on how to perform these edits.
How can we detect material in a text that is particularly difficult for
readers? How can we automatically generate alternatives to such ma-
terial? How can we decide which of the alternatives both fit the con-
text and make reading as easy as possible – or as easy as desired?
These questions are not generally easy to answer. Early stages of
text simplification research have aimed to build rule-based systems
that treat very specific grammatical phenomena and simplify these.
Striving for more robustness and coverage, most research has for the
last decades tried to induce simplification systems from data using
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machine learning techniques. A subset of these efforts has focused
on specific simplification strategies such as lexical simplification or
sentence compression, while others have attempted to generate more
holistic models that simplify a given text on a number of levels. The
survey of text simplification research presented in Chapter 2 goes into
more detail.

A much more basic question in simplification research, however,
touches the definition of the task itself. The examples above demon-
strate simplification strategies that correspond to the basic definition
of the task given at the beginning of this section: given a piece of
text, rewrite it such that it becomes easier to read. Here, no mention
is made of any specific target audiences, just as none of the exam-
ples explicitly states which parts of the original sentence should be
modified in an effort to accommodate the simplification needs of a
particular target group or individual.

There are, however, a number of research efforts in text simplifica-
tion that extend the above definition and explicitly address certain
target audiences, such as foreign language learners or people with
learning disabilities. Some of these are discussed in greater detail in
the next chapter. Before we turn to that, the following section argues
why the classical understanding of text simplification is not sufficient
and sets the theoretical scene for the remainder of the thesis.

1.3 there is no one-size-fits-all solution

The definition of text simplification given above is straightforward
and arguably frames the essence of the task reasonably well. However,
as we will argue in this section and in other parts of this dissertation,
it lacks the critical dimension of personalization, i.e., a necessary con-
sideration of the specific simplification needs of an individual user.
Without this dimension, and without an embedding in real-world sit-
uations, text simplification becomes a lot less valuable outside the
academic ivory tower.

Text simplification differs from many other tasks in NLP in that it
is not always easy to decide whether the output generated by some
model is good. In part-of-speech tagging or parsing, even though
there may be competing theories or structural ambiguities, we can
typically judge the quality of a prediction objectively and with high
confidence.2 The same goes for other typical NLP task families such
as information extraction or text classification. Machine translation is
closer to simplification in this respect: while some translations may
be more canonical than others, we can also generally accept many
different hypotheses. However, questions of style and linguistic com-

2 Furthermore, these kinds of grammatical analysis are typically employed as first
steps in a pipeline and not directly relevant to the end user.
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plexity can generally be answered relatively objectively, given that a
translation should reflect these qualities as they appear in the source.

In the case of text simplification, this is different. Here, at least cer-
tain aspects of the predicted output of a model must be judged by the
end user, subjectively and with respect to their specific simplification
needs. The reason for this is obvious: as an assistive technology, text
simplification serves the central purpose of promoting accessibility
of written language for people who would otherwise not be able to
understand it fully or be able to do so only to some degree, or who
would have to invest excessive amounts of energy to do so. In con-
junction with the fact that simplification needs and subjective notions
of text difficulty are highly specific not only between groups of peo-
ple (e.g. dyslexics vs. foreign language learners), but also intra-group
and between individuals, this means that simplification efforts must
be developed and evaluated with respect to individuals.

Evidence for the highly individual perception of text difficulty in
dyslexics, for instance, is provided by Watson and Goldgar (1988),
Bakker (1992), and Ziegler et al. (2008). People on the autism spec-
trum, who have been addressed widely in readability and simplifica-
tion research (Yaneva, 2016; Yaneva et al., 2016a,b), have been found to
exhibit very different manifestations of their condition in general, but
also with respect to reading (Evans et al., 2014). The need for truly
individualized approaches to simplification is further supported by
the fact that while researchers agree that some typologies of dyslexia
or autism exist, the particular typologies that have been proposed are
hotly debated. This makes it less feasible to develop simplification
solutions for specific subtypes of these conditions.

A number of other groups that have been targeted by simplifi-
cation display very individual cases that require personalized sim-
plification strategies. In the case of second language acquisition, a
learner’s native language unsurprisingly has a profound influence
on difficulty judgements (Shatz, 2017), but obviously this also varies
strongly within a group depending on factors such as the knowledge
of other foreign languages or simply dedication and talent. Beginner
readers evidently are very individual in the development of their liter-
acy, progressing at an individual pace and reaching different reading
levels even within the same class and age.

Very recently, first empirical evidence of the aptitude of person-
alized simplification models has been presented by Yimam and Bie-
mann (2018) and Lee and Yeung (2018). Both of these works acknowl-
edge that individual differences between users demand personalized
solutions to the simplification task and explore ways to adapt simpli-
fication models to individual needs. The experiments by Yimam and
Biemann (2018) show that re-training a substitution ranking model on
progressively more ranking annotations from the same user lets the
model adapt to this user quickly and effectively, with an error reduc-
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Figure 1.1: Traditional simplification workflow. From a static dataset, a
generic model is induced, and the user is presented with what-
ever the model outputs, with no opportunity for the user to con-
trol model behavior.

tion of over 30% after rating items in just over 1,000 sentences. Sim-
ilarly, Lee and Yeung (2018) conduct experiments in complex word
identification, a first step in lexical simplification, that show the su-
periority of models trained on individual annotations over generic
ones.

The above observations form the central motivation for the work
carried out in the framework of this thesis: there is no generic, one-
size-fits-all solution to text simplification. Instead, in order to truly be
helpful to the end user, it needs to be personalized or personalizable.

1.4 beyond end-to-end learning in simplification

As a sub-discipline in NLP, simplification faces the challenge of deal-
ing with natural language. Its organic nature makes language ex-
tremely difficult to describe in all its subtleties and variations. Any-
body who has ever ventured to learn a foreign language has expe-
rienced the frustration that many phenomena cannot easily be de-
scribed with, let alone be explained by, a manageable set of rules. Yet
even where rules are known, expressing them in unambiguous logi-
cal forms such that computer programs can deal with them is often
an intractable problem.

Therefore, language technology today largely pursues approaches
that are based on statistical methods, in particular machine learning
techniques. In basic terms, machine learning techniques aim to in-
duce a mathematical model from observed data in order to make
decisions on new data observed at a later time. In the context of text
simplification, this may involve training a translation-like model on
pairs of “normal” and simplified sentences, or learning to detect dif-
ficult words from annotations of language learners. In the optimal
case, the model learns to reproduce exactly what it sees in the data it
is trained on, while still generalizing optimally to new, unseen data
at test time. This process is illustrated in Figure 1.1, where a model is
induced from data in order to later provide simplifications to a user.
In this scheme, the model is entirely ignorant of the user, such that
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its output is determined solely by the data it was trained on and the
input it receives at production time, but not by any user-dependent
variables. More formally, the output y is defined as

y =MD(x) (1.1)

where M denotes the model induced from some dataset D, and x is
the production-time input. Generally, full generalizational power is
not easily attained – although, even if it were, models trained end-to-
end on a particular dataset will always only be as good as that dataset,
with no way of adapting to the specific simplification needs of an end
user. Moreover, supervised learning from a static dataset introduces
inherent biases towards the text domains and language varieties that
are covered by it, such that the successful application of a statically
trained system is hampered when the user’s reading interests differ
from those domains or when the target domains themselves change
over time (Žliobaitė et al., 2016).

The present dissertation aims to overcome these limitations. Rather
than focusing on developing state-of-the-art models on some bench-
mark dataset, its central research question is:

How can we make simplification more adaptive
and personalizable to the individual end user?

This is tackled mainly along two dimensions: (i) the development of
parametric simplification methods that allow for the setting of user
preferences at production time, as well as (ii) the incorporation of
user-specific behavioral data into the simplification model in order to
foster the continuous optimization and personalization of the model.
A third line of work tackled in this dissertation addresses general-
ization of simplification models across different settings, including
different text domains but also languages, using multi-task learning.

Eventually, the aim is to devise models that generate output de-
pending upon user preferences and some form of feedback. This is
reflected in the scheme depicted in Figure 1.2, which incorporates a
feedback loop from the user to the system, but also an interface to ex-
plicitly set particular preferences for the user. This extends Equation
1.1 to

y =MD,H(x,π) (1.2)

where the model M is now initially induced from a base dataset D
and then continuously updated in an online fashion from a history H
of user feedback. The output at production time is then conditioned
on the input x as well as explicitly set preferences π. Besides adapt-
ing a model to a specific user, the continuous integration of user feed-
back generally reduces offline annotation effort (To et al., 2009) and
thus also reduces the problem of resource scarcity that we typically
face in text simplification and other application areas of natural lan-
guage processing (see section 2.2.3 for a discussion of problems with
resource scarcity and possible mitigations).
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Figure 1.2: Extended simplification workflow incorporating user prefer-
ences and feedback. The user-specific model accepts the setting
of user preferences and conditions the output on this. It further
updates itself continuously from user feedback.

1.5 main contributions

At this point, let us review the definition of text simplification as
stated initially in Section 1.2, which portrays the task in a largely
user-agnostic fashion. The foregoing discussion motivates an exten-
sion of that definition to include knowledge of the end user in the
simplification process, with the aim of tailoring all simplifications as
appropriately as possible to the specific user. In other words, let us
consider text simplification as a task that aims to make text easier to
read for a specific person, according to what is known about their specific
simplification needs and reading proficiency, while preserving as much as
possible of the informational content.

The individual studies carried out in the framework of this thesis
are, in some way or another, reflections of this updated definition of
the simplification task. They address various aspects of an extended,
user-aware conception of text simplification and thus constitute the
main contributions of this thesis:

• Chapters 3 and 4 introduce and evaluate methods to induce
sentence-level simplification models that allow for live adapta-
tions at production time. This is achieved through overcoming
the black-box character that typical end-to-end simplification
methods entail, and instead explicitly predicting available sim-
plification operations for various parts of a sentence. These can
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then be used by parametric models that possess knowledge of
their users to generate custom-tailored sentence simplifications.

• Besides explicitly setting user preferences (such as a hard limit
on sentence length or a rule that all pronouns should be re-
placed with their antecedents), we would like to infer those
more naturally from various kinds of user feedback. This is
motivated by the assumption that individuals do not generally
have detailed insights into their particular simplification needs,
e.g., the particular factors that render a word difficult to read
for them. Methods to learn user preferences from explicit and
implicit feedback such as behavioral data are proposed and dis-
cussed in chapters 5 and 6.

• Standard machine learning methods that induce a model from
a single dataset are prone to overfitting and limited adaptive-
ness to new domains or other forms of divergence of data dis-
tributions at training and testing time. This can be alleviated by
multi-task learning, i.e., the learning of various functions in a
single model, possibly from disparate datasets. Multi-task learn-
ing models are discussed in Chapters 7 and 8, shedding light on
the conditions under which the paradigm is helpful and how it
can help to transfer knowledge between tasks.



2
A S H O RT H I S T O RY O F S I M P L I F I C AT I O N
R E S E A R C H

Text simplification as a research direction in NLP dates back to the
1990s and has its origins in the works of Chandrasekar et al. (1996),
Chandrasekar and Srinivas (1997), and Dras (1999). Interestingly, mak-
ing text more accessible for human readers is not the first devised
application for simplification as considered in these papers. Instead,
the case for simplification derives from the observation that long sen-
tences with uncanonical formulations and low-frequency vocabulary
will be particularly difficult to process for machines, for instance in
NLP application areas such as parsing, machine translation and infor-
mation extraction.3

Nevertheless, these early works established text simplification as a
research direction and inspired follow-up studies that approached the
task as an assistive technology directed at human users. Among the
first of these is the work by Carroll et al. (1998), which puts its focus
on a specific target group, tackling problems that aphasic readers typ-
ically face. This is remarkable, because subsequent efforts in text sim-
plification have often neglected any specific simplification needs of
particular groups, and have instead assumed a rather homogeneous
user population.

Another development concerns the actual methods that have been
applied in creating simplification systems. The earliest works by Chan-
drasekar et al. are based on explicit syntactic transformation rules
that are either hand-coded or induced from data. As argued by Sid-
dharthan (2014), hand-crafted rules are sensible in the realm of text
simplification when a system focuses on very specific linguistic struc-
tures and phenomena that are relatively easy to manage with a finite
and small set of rules. However, such rule-based systems often suf-
fer from very limited coverage and fail to detect subtle variations in
surface form. A focus on the simplification of lexical material further
requires some sort of data-driven approach.

At a very coarse level, a common distinction between research ef-
forts in text simplification divides them into those focusing on lexi-
cal simplification, i.e., the replacement of individual words or mul-
tiword expressions with simpler alternatives, and those that take a
more holistic approach and aim to rewrite entire phrases or sentences.
In the latter case, typical simplification strategies are to shorten sen-
tences by removing peripheral information, to break up a long sen-

3 In the light of this observation, the lack of user orientation discussed in the previous
chapter and in further parts of this thesis may appear less surprising.
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tence into several shorter ones, or to transform passive constructions
into active ones – see the previous chapter for a range of sample sim-
plification strategies.

Notable, extensive surveys on text simplification have been pub-
lished by Siddharthan (2014) and Shardlow (2014a), as well as by
Paetzold and Specia (2017a) with a focus on lexical simplification. The
overview presented here draws on these surveys and complements
them with recent developments and, where applicable, an angle on
the target audiences of individual works and the question of how
adaptable these works are. Following the conceptual distinction be-
tween lexical and more holistic, sentence-level simplification, we first
give an account of previous research in the former field, then in the
latter, in the following two sections. We further discuss the particular
challenges and solutions in both of these areas.

2.1 lexical simplification

Sometimes overlooked in related work sections, dedicated lexical sim-
plification components have been part of higher-level text simplifi-
cation and adaptation systems since Carroll et al. (1998), who base
their work on that of Devlin and Tait (1998). The latter employs a
simple synonym lookup in WordNet (Miller, 1998) as well as the Ox-
ford Psycholinguistic Database (Quinlan, 1992), which encodes word
difficulty through the Kučera-Francis frequency, i.e., the relative fre-
quency of a word in a million-word corpus (Kučera and Francis, 1967;
Rudell, 1993). Interestingly, this work also includes a way for users to
control the output by specifying a desired level of simplification. Very
similar approaches to lexical simplification, yet without any control
through the user, are offered by Lal and Ruger (2002), Burstein et al.
(2007), and De Belder et al. (2010).

2.1.1 Data-driven approaches

However, lexical simplification only gained traction as a more focused
research direction with the work of Yatskar et al. (2010). Their ap-
proach overcomes the limitations of previous lexical simplification
approaches, which could only retrieve candidate replacements from
precompiled synonym dictionaries. Instead, Yatskar et al. (2010) ex-
ploit edit histories in the Simple English Wikipedia4 and mine syn-
onym pairs from the old and updated versions of articles, calculating
the probabilitiy that an edit is in fact a simplification operation. This
contribution inspired a host of papers tackling lexical simplification;
Biran et al. (2011), for example, compare the simple and “regular” En-
glish Wikipedia texts and extract simplification rules from statistics of
word distributions over these.

4 https://simple.wikipedia.org

https:// simple.wikipedia.org
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Further developments then saw the Lexical Simplification shared
task at SemEval 2012 (Specia et al., 2012). This task featured simplicity
annotations from non-native speakers of English and focused on the
ranking of a set of candidate replacements for a given word in context.
Receiving submissions from five teams, the task was “a first attempt
at garnering interest in the NLP community for research focused on
the lexical aspects of Text Simplification” (Specia et al., 2012), and did
indeed help place this research direction on a sounder footing. The
findings of the shared task included, among others, further evidence
of the strong relationship between frequency and simplicity, at least
in the case of the dataset used in the task.

Lexical simplification was later tackled in a concentrated research
program by Matthew Shardlow. One of his contributions is the defini-
tion and formulation of what is known as the Lexical Simplification
Pipeline, a four-step process that (i) identifies difficult material in a
sentence, (ii) generates candidate replacements for these, (iii) filters
out candidates not fitting the context, and (iv) ranks the remaining
substitution candidates by simplicity (Shardlow, 2014b). This proce-
dure, illustrated in Figure 6.1, has become a de-facto standard concep-
tualization of the task and has been adopted by many subsequent
works.

In particular, this division into several subtasks has led to concen-
trated efforts on individual aspects of the pipeline, most notably com-
plex word identification (CWI) and substitution ranking (SR). Two
shared tasks with a combined number of 33 research teams have been
held for complex word identification (Paetzold and Specia, 2016b;
Yimam et al., 2018), with the winning systems typically employing
ensembles of systems that make use of a number of manually engi-
neered features of linguistic and psycholinguistic nature. Both shared
tasks provide manual annotations of word difficulty. In the case of
Paetzold and Specia (2016b), these come exclusively from second lan-
guage learners of English, whereas Yimam et al. (2018) include an-
notations by native speakers and extend the task to three additional
languages (German, Spanish and French). The second shared task
also differentiates itself from its predecessor through its “probabilis-
tic” track, i.e., the challenge to predict the fraction of annotators who
deemed an item difficult, as opposed to the binary decision whether
any of the 10 or 20 annotators did so. From the perspective of this
thesis, this gradual notion of difficulty is a lot more desirable than
a binary one, as it allows for much simpler adaptivity in the lexical
simplification pipeline, for instance via a threshold that can express
the level of simplification a user desires. However, the 2018 shared
task was not limited to the probabilistic setting and additionally of-
fered a binary track, which received a lot more attention from the
participants and still seems to be favored by the community.
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Substitution ranking was approached in a very simple manner in
early lexical simplification research, mostly by taking frequency as a
proxy for simplicity (Devlin and Tait, 1998; Carroll et al., 1998; Shard-
low, 2014b). While frequency is indeed a very strong signal of expert
simplicity ratings (Rudell, 1993), the approach has a number of short-
comings. One of these is that it does not generalize well across target
audiences: frequency correlates with (and causes) familiarity, which
may be beneficial for second language learners with good general
reading skills. However, other properties of a written word, such as
its length or the occurrence of certain character combinations, may be
much more relevant to the difficulty perception in dyslexics or other
populations with generally low literacy. Research in substitution rank-
ing has therefore included further word representations through fea-
tures such as length or abstractness (Biran et al., 2011; Sinha, 2012).
These and a range of following approaches have in common that they
compute simplicity scores independently across a set of substitution
candidates. As such, they do not technically differ from the CWI ap-
proaches listed above in a significant way. Work that addresses the
pairwise ranking of candidates is presented by Paetzold and Specia
(2017b), which is also one of the first successful applications of deep
learning in lexical simplification and uses a Siamese neural network
to decide the relative difficulty between two words. This has been
shown to be superior to more classical approaches and currently rep-
resents the state of the art.

Yimam and Biemann (2018) as well as Lee and Yeung (2018) re-
cently published first work on personalized and adaptive lexical sim-
plification, demonstrating that models trained on user-specific data,
even when small, work better for the same user than generic models.
They focus on substitution ranking and complex word identification,
respectively, and Yimam and Biemann in particular demonstrate the
effectiveness of an adaptive setup, where the system learns from con-
tinuous user feedback.

2.1.2 Languages other than English

Depending upon the availability of lexicographical resources on the
one side and parallel corpora on the other, data-driven approaches
can be a way to develop lexical simplification systems for languages
other than English. Lexical simplification for languages other than En-
glish comprises the efforts of Bott et al. (2012a) and Drndarevic and
Saggion (2012), who have been focusing on Spanish lexical simplifica-
tion. Ferrés et al. (2017) present a multilingual approach that works
across the major Ibero-Romance languages (Spanish, Portuguese, Cata-
lan and Galician). As an example of lexical simplification outside the
Indo-European family, Kajiwara and Yamamoto (2015) and Hading
et al. (2016) present work on Japanese.
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2.1.3 Open challenges in lexical simplification

As outlined above, lexical simplification has not received an over-
whelming amount of attention from the research community. Conse-
quently, while the task may at first sight seem relatively simple, there
are a number of challenges that require further research into this area.
The major ones are discussed in this section.

near-synonyms In substitution generation, i.e., the retrieval of
candidate replacements for some target word, the most straightfor-
ward approach is to use machine-readable synonym dictionaries or
a WordNet (Miller, 1998) to look up synonymous expressions for
a target word. This solution typically offers robust synonym rela-
tions edited by professional lexicographers. However, such dictionar-
ies may suffer from low coverage or, for most languages, be entirely
unavailable. For less resourced languages, a common approach is
thus to retrieve synonyms from corpus statistics. Departing from the
assumption that words similar in meaning occur in similar linguistic
environments, word embedding algorithms compute high-dimensio-
nal, real-valued vector representations of word meaning, such that
words with similar meanings are clustered in close proximity within
the vector space (Bojanowski et al., 2016; Mikolov et al., 2013). Similar-
ity in meaning can then be measured (e.g., using the cosine distance
between word vectors) and expressed as a quantity.

The challenge now lies in deciding what degree of similarity is suf-
ficient to the notion of synonymity, or in telling near-synonyms from
“true” ones. Typically, there is no obvious cut-off that separates those
sides consistently across many examples, and we need to trade off
precision for recall. Another pitfall lies in the fact that antonyms (such
as big and small) tend to occur in the same linguistic environments,
such that word embedding algorithms often are unable to differenti-
ate them and assign high similarity scores to them.

ambiguity in sense and category One of the greatest chal-
lenges in lexical simplification lies in the phenomenon that many
words have more than one meaning (or ‘sense’). Whether due to
homonymy or (structural) polysemy, it is often difficult for comput-
ers, and sometimes even for humans, to confidently decide which of
its senses a word bears in a given context. Being able to do so is an
obvious necessity in lexical substitution. Considering the sentence A
bridge across the sound connects Denmark and Sweden, we must not re-
place sound with noise, as it carries its ‘body of water’ meaning here.
A more suitable substitution in this case would be strait or sea passage.

In some languages, including English, this is aggravated by the fact
that many words can belong to different parts of speech. Again, sound
is a good example, as it can be a noun, verb or adjective. The classic
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example, however, is round, which can be one of five parts of speech
(a noun, a verb, an adjective, an adverb or a preposition). If we want
to replace this word with a synonym, we need to know which part
of speech it has in a specific context, since its synonyms are specific
to only some of these categories (e.g, lap for the noun or around for
the adverb). This phenomenon, called recategorization, is fairly pro-
ductive in modern English and extends to other aspects of grammar,
for instance noun subcategories such as abstract vs. concrete, mass vs.
count, proper vs. common (Brinton and Brinton, 2010).

In the lexical simplification pipeline, this problem is typically tack-
led in the substitution selection step. Context awareness can for ex-
ample be achieved by explicit word sense disambiguation. If we can
link a specific occurrence of an ambiguous word to one of its senses
as encoded in, for instance, WordNet, we can retrieve synonyms for
this sense specifically. However, this comes with the typical problems
of such a resource-reliant approach, including the limited coverage
or unavailability of such resources in most languages. An alternative
approach is suggested by Biran et al. (2011), who measure the cosine
similarity between a synonym candidate and the target’s context, and
only allow the substitution if the similarity is high, assuming that its
high semantic relatedness implies that the target sense is synonymous
with the replacement. A simpler approach is the default strategy in
substitution selection, namely the scoring of the altered phrase with
a statistical language model.

morphological variation Depending on the language a lexi-
cal simplification system works on, morphological variation of words
can pose a major challenge. Keywords in synonym dictionaries are
typically limited to lemmas, such that inflected forms have to be re-
duced to their lemmas before retrieving synonyms. Once this hurdle
is overcome, the next challenge is to inflect the synonym lemma for
the morphological features stripped in the first step. These two prob-
lems can be addressed with morphological analyzers, but the avail-
ability and quality of these is very limited across languages. For En-
glish, however, this approach has been explored by Lal and Ruger
(2002), while Biran et al. (2011) generate a synonymy list that di-
rectly includes inflected forms and their inflected synonyms using
Morphadorner (Burns, 2013).

Another problem is caused by syncretisms, i.e., identical surface
forms that are grammatically ambiguous. As an example, consider
the Danish word tegn (‘sign’, ‘signal’), which in this form can either
be singular or plural. In the Danish WordNet (Pedersen et al., 2009),
signal (‘signal’) is listed as a synonym. If we now want to substitute
signal for tegn, we need to decide whether to inflect the former in
its singular form (signal) or in its plural form (signaler). A way to
disambiguate between singular and plural could be through deep
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grammatical analysis or using a probabilistic language model, but
neither of these methods is always reliable.

grammaticality Besides the issue of morphological variation
outlined above, grammaticality can be corrupted when two synony-
mous words display different syntactic behavior, for instance when
verbs take different semantic roles or through differences in selec-
tional preferences. A related problem occurs when phrasal verbs are
not recognized as such during CWI. For instance, in example 5a, fail-
ing to detect cares for as a multi-word unit and only replacing cares
may produce ungrammatical (5b) output or distort meaning (5c). In
order to ensure a valid paraphrasation as in example 5d, we need to
identify the entire phrase as the replacement target.

(5) a. She cares for elderly patients.

b. * She minds for elderly patients.

c. She looks for elderly patients.

d. She looks after elderly patients.

2.2 higher-level simplification

Over the last couple of decades, text simplification has received a
significant amount of attention from the research community also be-
yond the lexical aspect. Adding to the early works that established
the field and which have been briefly discussed above, this section
focuses on work that tackles text simplification with data-driven ap-
proaches. Notably, all works discussed here operate on the sentence
level as their basic input unit. In this way, simplification can be tack-
led in a very similar fashion to machine translation, which also typ-
ically works on sentences in isolation. In this section, we first give
an account of focused efforts that aim to catch specific linguistic phe-
nomena and simplify them, before turning to translation-based sim-
plification strategies that are not engineered with specific phenomena
in mind. Lastly, we discuss the still open challenges in sentence sim-
plification research.

2.2.1 Targeted simplification

Text simplification strategies that focus on specific linguistic phenom-
ena marked the first approaches to simplification in general. Here we
give an account of the most important simplification targets that past
research has dealt with.

compression and summarization One of the most explored
ways to automatically reduce reading difficulty of sentences is to



20 a short history of simplification research

shorten them by removing words and phrases such that only the
essential information is retained. The earliest work in this area is
presented by Knight and Marcu (2000), who address the problem
by scoring subtrees of the input sentence parse with a noisy-channel
model. The model is induced from the Ziff-Davis corpus, a collec-
tion of sentences and manual compressions from newspaper articles
about technological products.

Related to this approach is the one by Cohn and Lapata (2009),
who also operate on parse trees. However, their method differs from
the former by employing the Synchronous Tree Substitution Gram-
mar framework, which Siddharthan (2014) points out would in prin-
ciple allow to cover reorderings and insertions of subtrees, although
this possibility is not explored. Grammar-based solutions to sentence
compression are further proposed by Woodsend and Lapata (2011),
Siddharthan and Mandya (2014), and Mandya et al. (2014).

An obvious problem with the reliance on parsers is their limited ac-
curacy and the emergence of downstream errors from incorrect pars-
ing output. Work that partly overcomes the necessity of high-quality
parses was introduced by McDonald (2006), who suggests discrimina-
tive learning algorithms to score and decode from the full set of possi-
ble compressions. While this approach still uses syntactic information
provided by parsers as features, parse errors can be assumed to have
less dramatic effects on the final prediction. Indeed, this approach ap-
pears to produce more grammatical output than the previous works
(McDonald, 2006).

Nomoto (2007) presents an even simpler approach that uses Condi-
tional Random Fields to only operate on the flat input sequence and
delete or retain individual tokens. This idea was later pursued by Fil-
ippova et al. (2015), who make use of the availability of significantly
more training data which they mine from pairs of first sentences in
newspaper articles and the respective headlines. Their model is a re-
current neural network (RNN) and poses the first approach to com-
pression that makes use of deep learning strategies. Another notable
contribution comes from Klerke et al. (2016), who extend the RNN-
based model and use gaze signals from an external corpus to inform
sentence compression in a multi-task learning setup.

Another line of work has tackled abstractive sentence summariza-
tion, which is the condensation of information that goes beyond mere-
ly deleting words and phrases, and employs rewriting strategies to
generate an abstract of an input sentence. A recent and notable contri-
bution is the work by Chopra et al. (2016), who use a recurrent neu-
ral network trained on sentence-headline pairs from the Gigaword
corpus. Their encoder-decoder architecture is inspired by neural ma-
chine translation models, and in this respect is very similar to some
of the work discussed in the next section, but their focus on sentence
summarization sets it apart from most of that work. Further, note that
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like extractive sentence compression, abstractive summarization is of-
ten not primarily understood as a simplification strategy, but rather
seen by many authors as an “important step towards natural lan-
guage understanding” (Chopra et al., 2016).

pronoun replacement Another simplification strategy that has
received significant attention is the substitution of pronouns with
their referents. Recovering the antecedent poses difficulty for a num-
ber of target populations, most notably people on the autism spec-
trum. For them, it is particularly challenging to interpret the cue
given by the pronoun that a referent “was recently discussed and
is available in memory, but is not currently in attention” due to their
difficulty in directing and managing attention (O’Connor and Klein,
2004). This task is generally challenging for readers who suffer from
a reduced processing bandwidth, for example people with dyslexia
who need to dedicate a great deal of their attention to decoding letters
to sounds.

These observations motivated the first works that explicitly address
pronoun replacement as part of simplification systems. These were
part of the PSET project (Carroll et al., 1998) and explicitly addressed
people with aphasia (Canning and Tait, 1999) and dyslexia (Canning
et al., 2000). Further work on pronoun replacement comes from Sid-
dharthan (2003), who incorporates a model of a reader’s attention
to detect pronouns that are difficult to resolve. Finally, Yaneva and
Evans (2015) lends further support for the effectiveness of replacing
pronouns in text simplification systems for the benefit of people with
autism.

sentence splitting Difficulty in reading comprehension is ag-
gravated as sentences become longer and take a greater toll on the
working memory of the reader. A very obvious way to reduce text
complexity is therefore to split long sentences into several shorter
ones, a strategy that is often encountered as one of the most frequent
simplification operations in corpora of manually produced simplifi-
cations across a number of languages (Petersen and Ostendorf, 2007;
Gasperin et al., 2009; Bott et al., 2012b; Xu et al., 2015). Sentence
splitting has therefore been explored since the early works of Chan-
drasekar et al. (1996), Chandrasekar and Srinivas (1997), and Dras
(1999). These approaches make use of pattern-based rewriting rules
over parse trees, either hand-coded as in the first of these works or
induced from manually produced simplifications in the case of the
latter two.

A popular target for these early works were non-restrictive relative
clauses, which the authors aimed to extract and then append, with
the referents as their subjects, to the main sentence. Such pattern-
based approaches manage to capture relative clauses reasonably well,
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but tend to exhibit problems in inferring the correct referent. Sid-
dharthan (2003, 2006) points out these issues and employs models
of discourse structure, most notably Centering theory (Grosz et al.,
1995), to preserve text cohesion. This work also approaches sentence
splitting beyond the extraction of relative clauses, covering apposi-
tion, coordination and subordination.

Zhu et al. (2010) follow earlier approaches in relying on parses and
rules to identify possible splits, but they incorporate a statistical com-
ponent into their method that learns if a split at a certain subordinate
clause is valid. This decision is followed by a completion step, in
which the split-off clause is transformed into a full sentence, e.g., by
copying the subject from the main clause. In a similar vein, Lee and
Don (2017) score splits at various locations in a parse tree by employ-
ing decision trees, yet their work neglects the necessary second step
of completing the split-off material to a full sentence.

Finally, Bott et al. (2012b) present work on sentence splitting in
Spanish that is, analogously to the English work cited above, based
on syntactic rules.

other examples The simplification strategies listed above are
only the most prominent ones. There is, however, a wide range of
other types of sentence simplification that have been tackled by a
smaller number of papers and research projects. These include the
transformation of periphrastic of -possessives to genitive forms or the
resolution of cleft constructions, both tackled by Dras (1999).

Another interesting approach is to augment the original sentence
with additional material that explains difficult vocabulary and unfa-
miliar concepts such as technical terminology. Support for this strat-
egy comes from Rello et al. (2013b), who show that in some cases this
is preferable to substitution as it is normally done in lexical simplifi-
cation.

2.2.2 Simplification as monolingual translation

An approach that has for some time been a major trend in simpli-
fication research is to treat the task as a special case of machine
translation (MT) with identical source and target languages. A first
contribution in this direction is the work of Zhu et al. (2010), which
uses a translation model based on parse tree transformations, making
use of the reduced necessity to perform translation operations at the
lexical level in the case of monolingual translation. Subsequent de-
velopments in the simplification-as-translation area then focused on
the statistical machine translation paradigm and later moved on to
neural methods, reflecting general trends in MT. We very briefly dis-
cuss these different methods below and highlight a number of their
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applications to simplification, first for statistical and then for neural
machine translation.

statistical mt In statistical MT, in particular the phrase-based
kind (PBMT), a system first learns alignments between words and
multi-word units (phrases) from a corpus of parallel sentences. From
the same data, translation likelihoods between these phrases are then
estimated. At decoding time, a system generates partial translations
from an input and scores them based on its translation model as well
as a language model that is supposed to ensure fluency and gram-
maticality in the output. For more detail, see Koehn (2009).

Approaches that have followed this paradigm for the purpose of
text simplification have in some cases used a standard PBMT set-
ting (Specia, 2010) or adapted the decoder to accommodate certain
desiderata in simplification, for instance promoting diversity between
the input and output (Wubben et al., 2012) or keeping the output
short (Coster and Kauchak, 2011b).

A challenge in translation-based simplification has been the scarcity
of parallel data. The previously mentioned strategy of extracting pairs
of standard and simplified sentences from the Simple English Wiki-
pedia provided data for many of the first translation-based approaches
in text simplification for English. Yet, besides its lack of clear guide-
lines and professional editors, the drawbacks of this dataset quickly
become apparent when we investigate more closely the output pro-
duced by many of these phrase-based approaches. As the findings
by Alva-Manchego et al. (2017) suggest, the generally high similarity
between the input and output sentences — in particular on the more
local level of words and phrases, since in the majority of cases these
are retained — makes learning abstract simplification operations dif-
ficult for a standard PBMT system that makes many local decisions.

In response to such problems, Xu et al. (2016) propose ways to
adapt statistical machine translation systems to the simplification task.
Their contributions include the development of simplification-specific
objective functions and metrics as well as a method to score para-
phrase rules for simplicity.

neural methods The rise of neural methods in machine trans-
lation, propounded by the seminal works of Kalchbrenner and Blun-
som (2013), Sutskever et al. (2014), and Cho et al. (2014), has led a
number of researchers to try to adopt this technology for text sim-
plification. Neural MT systems usually consist of two main compo-
nents, an encoder and a decoder. The former iterates over a sequence
of words that are represented through high-dimensional embedding
vectors and computes a state vector across every timestep, such that
at the end of the iteration the state vector is a fixed-size representation
of the entire sequence (typically a sentence). The decoder then gener-
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ates output words based on this input representation as well as the
previously generated output. Later developments have highlighted
the benefit of an attention mechanism that lets the decoder focus on
specific parts of the input sentence (Bahdanau et al., 2014; Luong et
al., 2015). The advantages of the neural approach over statistical MT
lie in more fluent and grammatical output as well as better capturing
of long-range dependencies, albeit at the cost of slower model train-
ing and the need for large volumes of training data due to the large
number of parameters typically involved.

Through the availablity of the Newsela corpus (Xu et al., 2015),
neural MT has become a feasible alternative in sentence simplifica-
tion.5 Nevertheless, the first work that used neural MT methods for
text simplification Nisioi et al. (2017b) still chooses to learn simplifi-
cations from the Simple Wikipedia corpus compiled by Hwang et al.
(2015). Zhang and Lapata (2017) use the Newsela data and extend
the former work by optimizing directly for simplification-relevant
metrics, most notably SARI (Xu et al., 2016), through reinforcement
learning. Finally, Scarton and Specia (2018) propose a neural simplifi-
cation model which takes as an additional input a desired simplicity
level, which to some degree allows them to adapt the output to spe-
cific readers.

2.2.3 Challenges in sentence simplification

output grammaticality A major risk in manipulating text is
that it can be rendered ungrammatical. This applies to all simplifi-
cation approaches, whether a text simplification system exchanges a
word with a suspected synonym, removes words or entire phrases
from a sentence, or changes its grammatical structure. The potential
causes of ungrammatical output are manifold and can range from
preprocessing errors (e.g., incorrect parses in a heavily syntax-reliant
system) to naive substitutions of phrases that would require different
syntactic configurations (see also the preceding discussion on chal-
lenges in lexical simplification).

Ungrammaticality affects text simplification more than other text
generating applications, for instance chatbots or translation systems.
In comparison to those, ungrammatical output has much more severe
repercussions in text simplification, where the user is generally more
sensitive to surprising and uncanonical language. Grammatical er-
rors and semantic anomalies eventually make text less intelligible (or
perhaps even completely unintelligible), thereby causing a system’s

5 The corpus is aligned at the document level, such that parallel sentences need to
be extracted first, and the parallel corpus size ultimately depends on this process.
However, the available number of parallel sentences is typically much larger than
Wikipedia-based datasets, though much smaller than standard MT corpora.
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output to be entirely diametrical to the principal and ultimate goal of
text simplification, namely to promote accessibility.6

Ensuring grammaticality is not very straightforward, and the detec-
tion of grammatical errors is an active research field in its own right
(Chodorow and Leacock, 2000; Gamon, 2011; Leacock and Chodorow,
2003; Cummins and Rei, 2018). Papers on text simplification often
discuss grammaticality issues and evaluate for grammaticality, but in
general no solutions to this problem are provided beyond the applica-
tion of statistical language models to re-rank hypotheses for fluency.
This approach, however, is generally not good enough, since it only
provides relative comparisons between hypotheses and cannot reli-
ably judge grammaticality. Further research in simplification is thus
advised to work towards this goal of ensuring grammatical output.

resource scarcity The limited availability of resources for text
simplification has been a problem for the field, even if individual con-
tributions such as the development of a simplification-specific evalua-
tion metric (Xu et al., 2016) or the publication of a more targeted sim-
plification corpus (Xu et al., 2015) have had a notable impact and have
partly solved some of the issues pointed out by Shardlow (2014a).
However, most simplification datasets are still limited to English and
are still relatively small in comparison to datasets in other areas of
NLP, such that many of the technical advances used in technically
related areas like machine translation cannot be easily transferred to
simplification.

The challenge for text simplification research lies in developing so-
lutions, in particular in low-resourced languages, to overcome the
need for great amounts of data. Approaches that could work in this
direction include transfer and multi-task learning across tasks and
languages, see also chapters 7 and 8 of this dissertation. Further, the
work presented in chapters 5 and 6 investigates methods to continu-
ously receive explicit and implicit input from users, such that existing
datasets can be augmented with this information.

6 Note, however, that in special circumstances, ungrammatical sentences are more
readily acceptable than grammatical ones, with certain grammatical phenomena giv-
ing rise to a perceived grammaticality (Gibson and Thomas, 1999; Shravan et al., 2010)





Part II

A D A P TA B L E M O D E L S F O R S E N T E N C E
S I M P L I F I C AT I O N





3
T E X T S I M P L I F I C AT I O N A S T R E E L A B E L I N G

abstract

We present a new, structured approach to text simplification using
conditional random fields over top-down traversals of dependency
graphs that jointly predicts possible compressions and paraphrases.
Our model reaches readability scores comparable to word-based com-
pression approaches across a range of metrics and human judgements
while maintaining more of the important information.

3.1 introduction

Sentence-level text simplification is the problem of automatically mod-
ifying sentences so that they become easier to read, while maintain-
ing most of the relevant information in them. This can benefit appli-
cations as pre-processing for machine translation (Bernth, 1998) and
assisting technologies for readers with reduced literacy (Carroll et al.,
1999; Watanabe et al., 2009; Rello et al., 2013a).

Sentence-level text simplification ignores sentence splitting and re-
ordering, and typically focuses on compression (deletion of words)
and paraphrasing or lexical substitution (Cohn and Lapata, 2008). We
include paraphrasing and lexical substitution here, while previous
work in sentence simplification has often focused exclusively on dele-
tion. Approaches that address compression and paraphrasing (or more
tasks) integrally include (Zhu et al., 2010; Narayan and Gardent, 2014;
Mandya et al., 2014).

Simplification beyond deletion is motivated by the observation in
Pitler (2010) that abstractive sentence summaries written by humans
often “include paraphrases or synonyms (‘said’ versus ‘stated’) and
use alternative syntactic constructions (‘gave John the book’ versus
‘gave the book to John’).” Such lexical or syntactic alternations may
contribute strongly to the readability of a sentence if they replace
difficult words with shorter or more familiar ones, in particular for
low-literacy readers (Rello et al., 2013a). Our joint approach to dele-
tion and paraphrasing works against the limitation that abstractive
simplifications “are not capable of being generated by [...] most sen-
tence compression algorithms” (Pitler, 2010).

Furthermore, a central concern in text simplification is to ensure the
grammaticality of the output, especially with low-proficiency readers
as the target audience. Our approach to this problem is to remove or
paraphrase entire syntactic units in the original sentence, thus avoid-
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Figure 3.1: An example simplification tree

ing to remove phrase heads without removing their arguments or
modifiers. Like Filippova and Strube (2008), we rely on dependency
structures rather than constituent structures, which promises more
robust syntactic analysis and allows us to operate on discontinuous
syntactic units.

contributions We present a sentence simplification model which
is, to the best of our knowledge, the first model that uses structured
prediction over dependency trees and models compression and para-
phrasing jointly. Our model uses Viterbi decoding rather than scor-
ing of all candidates and outputs probabilities reflecting model confi-
dence.

3.2 data

We use the publicly available Google compression data set,7 which
consists of 10,000 English sentence triples with (1) the original sen-
tence as present in the body of an online news article, (2) a headline
based on the original sentence, and (3) a compression that is automat-
ically derived from the original such that it only contains word forms
present in the original, preserving their order. The following sentence
triple exemplifies these different versions:

(1) In official documents released earlier this month it appears the Queen
of England used the wrong name for the Republic of Ireland when
writing to president Patrick Hillery.

(2) Queen elizabeth ii used wrong name for Republic

(3) The Queen of England used the wrong name for the Republic of Ire-
land.

The data is pre-processed with the Stanford CoreNLP tools (Man-
ning et al., 2014), retrieving lemmas, parts-of-speech, named entities
and dependency trees. We reserve the first 200 sentences from the
data set for evaluation, the next 200 for tuning parameters (including
the used PPDB versions, see next paragraph), and use the remaining
9,600 sentences for training our model.

7 http://storage.googleapis.com/~sentencecomp/compressiondata.json

http://storage.googleapis.com/~sentencecomp/compressiondata.json
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deletion and paraphrase targets As our approach oper-
ates on dependency trees, aiming to prune or paraphrase subtrees
from the dependency tree of a sentence, we identify deleted or para-
phrased subtrees, marking their heads with a corresponding label. A
subtree receives a Delete label if none of the words subsumed by this
subtree occur in the compressed version of the sentence.

We identify paraphrased subsequences in an original sentence by
looking up the subsequence string in the Paraphrase Database (PPDB)
(Ganitkevitch et al., 2013) and testing if one of its possible paraphrases
occurs in the headline version of the sentence in question. The Para-
phrase Database 1.0 is a set of phrasal and lexical pairs that were
automatically acquired from bilingual parallel corpora, and thus con-
tain a portion of flawed paraphrase pairs. The database comes in a
number of different sizes, where small editions are restricted to high-
precision paraphrases with relatively high paraphrase probabilities.
As the two smallest editions of PPDB only yield a very low number
of paraphrase targets (less than 100 in the entire Google compression
data set), we opt to employ a medium-sized version of the resource
(size ‘L’) and find a total of 510 phrasal and lexical paraphrases in the
corpus.

3.3 method

We assume that text simplification is a generative process on syntac-
tic dependency graphs with a paraphrase dictionary. A dependency
graph G = (V ,A) is a labeled directed graph in the standard graph-
theoretic sense and consists of nodes, V , and arcs, A, such that for
sentence S = w0w1 . . . wn and label set R, V ⊆ {w0,w1, . . . ,wn}, and
A ⊆ V × R× V hold, and if (wi, r,wj) ∈ A then (wi, r ′,wj) 6= A for
all r ′ 6= r. We restrict the dependency graphs to the class of trees, i.e.,
for (wi, r,wj) ∈ A, if (wk, r,wj) ∈ A then k = i.

The generative process traverses the tree in a top-down fashion,
deleting or paraphrasing subtrees (see Figure 3.1). Note that elements
in subtrees dominated by a deleted node are automatically deleted
(analogously for paraphrases).

For each dependency tree G = (V ,A) in a training set of T sen-
tences, we derive an input sequence of K-dimensional feature vectors
x = x1, . . . , xn and an output sequence of y = y1, . . . ,yn. Our tree-to-
string simplification model is a second-order linear-chain conditional
random field (CRF)

p(y|x) =
1

Z(x)

n∏
i=1

exp{

K∑
k=1

θkfk(yt,yt−1, xt)}

with yi = Delete if and only if xi represents the least upper bound in
G covering a deleted span in the training data, and yi = Paraphrase if
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and only if xi represents the least upper bound in G covering a para-
phrased span in the training data. For example, if the entire sentence
is deleted, and (w0, r,wi) ∈ A, then yi = Delete (but yj = Leave for
j 6= i).

This encoding means that theoretically we can predict to para-
phrase a subtree that is dominated by a node which is in turn pre-
dicted to be deleted (or vice versa). However, once an operation is
carried out on a subtree, none of its dominated nodes are consid-
ered in the remainder of the top-down simplification process. Giving
preference to operations at higher-level syntactic environments in this
manner serves as a mechanism to resolve ambiguities in the decision
process by taking a wider context into account.

Furthermore, predicting a node to get paraphrased at the right cor-
ner of a deleted subtree can potentially influence labeling decisions
outside this subtree as a consequence of the dynamic-program Viterbi
decoding. We acknowledge that this is a theoretical drawback of the
presented approach, but given that we do not observe any such de-
pendency graphs in our data, we do not expect this to be a serious
problem in most cases.

Whenever our model predicts that a subtree be paraphrased, we
look up the respective token sequence in PPDB and replace it with
the candidate paraphrase (if available) that maximises the product of
frequency and translation probability according to PPDB.

features for crf model We train a second-order CRF model
using MarMoT (Mueller et al., 2013), an efficient higher-order CRF
implementation. The model computes its observational probabilities
from features based on properties of the subtree root token (incl.
POS, language model probability, NE mention, word difficulty), of
the internal structure of the subtree (incl. number of children, depth,
length of sequence), and of the external grammatical structure (incl.
dependency relation, parent POS, distance from parent, position in
sentence).

3.4 evaluation

baselines In the following experiments, we compare our work
to state-of-the-art approaches to sentence compression and joint com-
pression/paraphrasing. For the first of these two categories, we con-
sider the LSTM system described in Filippova et al. (2015) as well as
the results reported therein for the MIRA system (McDonald, 2006).
As a joint approach, we consider Reluctant Trimmer (RT), a sim-
plification system that employs synchronous dependency grammars
(Mandya et al., 2014). Since the LSTM system requires great amounts
of training data, which were not available to us, we cannot reproduce
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Recall Precision F1

Reluctant Trimmer

to
ke

ns

Delete 54.60 20.23 29.52

Paraphrase 01.67 66.67 03.27

Leave 52.27 78.54 54.60

Tree Labeling

su
bt

re
es Delete 43.31 67.54 52.77

Paraphrase 23.85 50.89 32.48

Leave 94.29 84.82 89.30

to
ke

ns

Delete 49.67 77.16 60.44

Paraphrase 21.16 51.52 30.00

Leave 80.33 50.91 62.32

Table 3.1: Performance on joint deletion and paraphrasing detection for our
tree labeling system (evaluating both on entire subtrees and token
level) as well as for the RT baseline (tokens only). Note that RT
is trained on the (Simple) English Wikipedia, not on the Google
compressions, and therefore the results may not be directly com-
parable.

its output and therefore limit our comparison of human rankings to
the eleven output examples provided in the paper.

f-scores We first evaluate our tree labeling model (TL) on its abil-
ity to predict subtree deletion and paraphrasing (i.e. whether a sub-
tree should be paraphrased, independent of the actual replacement).
The results for this evaluation setup, as well as word-level perfor-
mance, are listed in Table 3.1 and compared to RT. Note that for dele-
tion and paraphrasing, our model consistently has higher precision
than recall, thus generating more confident simplifications and less
ungrammatical output.

automated readability scores Table 3.2 reports the compres-
sion ratio (CR, percentage of retained words) as well as automated
readability scores that our model achieves on the test set and com-
pares it to the output of the RT baseline. Our system manages to com-
press the original texts by more than one third, but the gold simplifi-
cations (headlines and compressions) are still considerably shorter.
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Data version CR↓ Flesch↑ Dale-C.↓

Original — 49.15 9.55

Headlines 0.32* -80.77* 17.61*

Compressions 0.40* 70.80* 9.56

TL output 0.62* 56.25* 9.30*

RT output 0.86* 60.65* 9.27*

Table 3.2: Compression ratios and automatic readability scores for the
Google compression data set, compared to the system output.
Readability is indicated by a high Flesh Reading Ease score and
a low Dale-Chall score. * indicates differences compared to the
original sentences that are significant at p < 10−3.

System Readability Informativeness

MIRA 4.31 3.55

LSTM 4.51 3.78

TL 4.14 4.01

RT (11) 3.09 4.12

LSTM (11) 4.23 3.42

TL (11) 4.21 4.15

Table 3.3: Mean readability and informativeness ratings for the first 200 sen-
tences in the Google data (upper) and for the 11 sample sentences
listed in Filippova et al. (2015) (lower).

Our approach improves readability as measured by the Flesch Read-
ing Ease score8 (Flesch, 1948) and the Dale-Chall formula (Dale and
Chall, 1948). The former score measures textual difficulty as a func-
tion of sentence length and the number of syllables per word, while
the latter aims to estimate a US school grade level at which a text can
be well understood, based on a vocabulary list. Both metrics deem
the output of our system easier to read than the original texts, while
the Dale-Chall formula also rates our system better than the gold
simplifications.

human readability ratings Following Filippova et al. (2015)
in their evaluation setup for the sake of comparability, we ask raters
to assign scores on a one-to-five Likert scale to the first 200 sentences
from the Google compression data paired with the output of our sys-

8 The negative value that the headlines receive for this metric is due to an over-
representation of longer words in headlines.
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tem. Each pair is rated by three native or near-native speakers of
English.

The raters are asked to evaluate the sentence pairs for readability
and informativeness. The former, following Filippova et al. (2015), “cov-
ers the grammatical correctness, comprehensibility and fluency of the
output.” The latter metric pertains to the relation between the origi-
nal sentence and the system output as it “measures the amount of
important content preserved in the compression.”

Table 3.3 compares the performance of our model to the figures
reported in Filippova et al. (2015) for their LSTM model and McDon-
ald’s McDonald (2006) system (MIRA). For a comparison with the
same judges, we repeat the evaluation with the 11 sample output
compressions listed in Filippova et al. (2015) as well as the respec-
tive output from Reluctant Trimmer; see the lower part of Table 3.3.
The results suggest that, compared to the compression-only LSTMs,
our approach yields comparable performance in terms of readability,
while maintaining more of the central information in the original sen-
tences. Compared to RT, our system does considerably better in terms
of readability and retains slightly more of the important information.

3.5 related work

Several approaches to sentence compression have been presented in
the last decade. Knight and Marcu (2002) and Turner and Charniak
(2005) apply noisy channel models, using language models to control
for grammaticality. McDonald (2006) introduces a different approach,
discriminatively training a scoring function, informed by syntactic
features, to score all possible subtrees of a sentence. His work was
inspired by Riezler et al. (2003) scoring substrings generated from
LFG parses. A third approach to sentence compression is sequence
labeling, which has been explored by Elming et al. (2013) using linear-
chain CRFs with syntactic features, and more recently by Filippova et
al. (2015) and Klerke et al. (2016) using recurrent neural networks
with LSTM cells.

Most recent approaches to sentence compression make use of syn-
tactic analysis, either by operating directly on trees (Riezler et al.,
2003; Nomoto, 2007; Filippova and Strube, 2008; Cohn and Lapata,
2008, 2009) or by incorporating syntactic information in their model
(McDonald, 2006; Clarke and Lapata, 2008). Recently, however, Fil-
ippova et al. (2015) presented an approach to sentence compression
using LSTMs with word embeddings, with no syntactic features. We
return to working directly on trees, presenting a tree-to-string model
of sentence simplification. Our model has interesting similarities to
(Riezler et al., 2003), but uses Viterbi decoding rather than scoring of
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Original Sentence & Simplifications

O OG&E is warning customers about a prepaid debit card scam
that is targeting utility customers across the county.

C OG&E is warning customers about a scam.

R OG&E is warning customers about a debit card scam that is target-
ing utility customers across the country.

T OG&E is warning customers regarding a prepaid debit card scam.

O The husband of murdered Melbourne woman Jill Meagher
will return to Ireland later this month “to clear his head” while
fighting for parole board changes.

C The husband of murdered woman Jill Meagher will return to Ireland.

R The husband of Melbourne woman Jill Meagher will return to Ireland
this month to clear his head fighting for parole board changes.

T The husband of murdered Melbourne woman Jill Meagher will re-
turn to Ireland.

O A research project has found that taxi drivers often don’t know
what the speed limit is.

C Taxi drivers don’t know the speed limit is.

R A research project has found that drivers often do not know what
the speed limit is.

T A project has found taxi drivers don’t know what the speed limit is.

Table 3.4: Example output for original sentences (O) as generated by the
Reluctant Trimmer baseline (R) and our tree labeling system (T),
as well as the headline-generated Google compressions (C).

all candidates. Also, it follows Cohn and Lapata (2008) in going be-
yond most of these models, modeling compression and paraphrasing.

For lexical simplification, most systems typically use pre-compiled
dictionaries (Devlin, 1999; Inui et al., 2003) and select the synonym
candidate with the highest frequency. More recently, Baeza-Yates et
al. (2015) introduced an algorithm for lexical simplification in Spanish
that selects the best synonym candidate in a context-sensitive fashion.

Cohn and Lapata (2008), Woodsend and Lapata (2011) and Mandya
et al. (2014) present joint approaches to compression and paraphras-
ing that are based on (quasi-) synchronous grammars, and similarly
Zhu et al. (2010) take a syntax-based approach, but employ a prob-
abilistic model of various simplification operations. Napoles et al.
(2011) do not use syntactic information, but instead employ a character-
based metric to compress and paraphrase.
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3.6 conclusion

We presented a new approach to sentence simplification that uses
linear-chain conditional random fields over dependency graphs to
jointly predict compression and paraphrasing of entire syntactic units.
The objective of our model is to delete or paraphrase entire subtrees
in dependency graphs as a strategy to avoid ungrammatical output.
Our approach makes innovative use of a three-fold parallel monolin-
gual corpus that features headlines and compressions to learn para-
phrases and deletions, respectively. Human evaluation shows that our
approach leads to readability figures that are comparable to previous
state-of-the-art approaches to the more basic sentence compression
task, and better than previous work on joint compression and para-
phrasing. While our model does rely on syntactic analysis, it only
needs a tiny fraction (less than 0.5%) of the training data used by
Filippova et al. (2015).
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L E A R N I N G H O W T O S I M P L I F Y F R O M E X P L I C I T
L A B E L I N G O F C O M P L E X - S I M P L I F I E D T E X T PA I R S

abstract

Current research in text simplification has been hampered by two
central problems: (i) the small amount of high-quality parallel simpli-
fication data available, and (ii) the lack of explicit annotations of sim-
plification operations, such as deletions or substitutions, on existing
data. While the recently introduced Newsela corpus has alleviated
the first problem, simplifications still need to be learned directly from
parallel text using black-box, end-to-end approaches rather than from
explicit annotations. These complex-simple parallel sentence pairs of-
ten differ to such a high degree that generalization becomes difficult.
End-to-end models also make it hard to interpret what is actually
learned from data. We propose a method that decomposes the task
of TS into its sub-problems. We devise a way to automatically iden-
tify operations in a parallel corpus and introduce a sequence-labeling
approach based on these annotations. Finally, we provide insights on
the types of transformations that different approaches can model.

4.1 introduction

Text Simplification (TS) is the task of reducing the complexity of a
text without changing its meaning. Simplification can be applied at
various linguistic levels, from lexical substitution to more global op-
erations such as sentence splitting, paraphrasing or the deletion or
reordering of entire clauses.

Existing corpora for TS generally come in one of two variants. The
first focuses on very specific sub-problems, such as sentence com-
pression (Bingel and Søgaard, 2016) or the identification of difficult
words (Paetzold and Specia, 2016b), and typically encodes relevant
simplification operations as discrete labels on tokens. The other vari-
ant includes more general, higher-level types of simplifications that
often entail the rephrasing or re-structuring of sentences, with con-
tent added or removed. These “natural" simplifications are often cre-
ated for end-users rather than for research purposes. Examples of the
latter simplification resources include the Newsela (Xu et al., 2015)
and Simple English Wikipedia corpora (Zhu et al., 2010; Coster and
Kauchak, 2011c). These resources generally encode interdependencies
between different types of simplification better than single-purpose
resources and may thus seem favorable for learning simplifications.
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However, the freedom given to editors and lack of explicit labels on
the modifications performed makes generalization much more diffi-
cult, especially when existing resources are relatively small in com-
parison to corpora for other text-to-text problems like machine trans-
lation (MT). Nevertheless, these corpora have been extensively used
to learn phrase-based statistical and neural models for end-to-end TS
systems that bear resemblance to MT models (Specia, 2010; Zhu et al.,
2010; Coster and Kauchak, 2011c; Wubben et al., 2012; Narayan and
Gardent, 2014; Xu et al., 2016; Zhang and Lapata, 2017; Zhang et al.,
2017; Nisioi et al., 2017a).

adaptability and interpretability MT-style models are es-
sentially black boxes that offer little or no control over the way in
which a given input is modified. Additionally, in most cases the types
of modifications that are actually learned are limited to paraphrasing
of short sequences of words. We believe a middle ground is miss-
ing in terms of resources and approaches for TS, where models are
learned from a more informed labeled dataset of natural simplifica-
tions, and can then be applied in a controlled way, e.g., in adaptive
simplification scenarios that prioritize different ways of simplifying
(e.g. compression or sentence splitting) depending on a particular
user’s needs.

The only previous work on TS via explicitly predicting simplifi-
cation operations is that by Bingel and Søgaard (2016), who create
training data from comparable text to label entire syntactic units and
train a sequence labeling model to predict deletions and phrase sub-
stitutions in a complex sentence. Our approach is different in that it
captures a larger variety of operations in a more global fashion, by
using sentence-wide word alignments rather than surface heuristics.
Furthermore, we use a more reliable (professionally created) corpus
and our approach is more flexible as we do not rely on syntactic parse
trees at test time.

contributions This paper introduces the following main contri-
butions: (1) We provide an in-depth analysis on the potential and lim-
itations of the dominant approach to TS: end-to-end MT-style mod-
els; (2) We devise a method to automatically identify specific sim-
plification operations in aligned sentences from complex-to-simple
simplification corpora. This results in a corpus that can be used to
study how human experts perform simplification tasks, as well as
to train simplification models to address specific problems; and (3)
We propose a sequence labeling model built from such a corpus
to predict which simplification operations should be performed as
a first step for a complete simplification pipeline. This approach is
highly modular: once operations are identified, different methods
can be applied to cover each simplification operation. We show that
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this operation-based TS approach is able to produce simpler texts
than end-to-end models. The code for extracting the simplification op-
erations is available at https://github.com/ghpaetzold/massalign,
while our sequence labeling model is released at https://github.

com/jbingel/ijcnlp2017_simplification.

4.2 related work

In what follows we give a brief description of previous work on sta-
tistical and neural models for TS. We first compare methods using
versions of Simple English Wikipedia data (Zhu et al., 2010; Coster
and Kauchak, 2011c), before considering recent work that relies on
the professionally edited Newsela corpus (Xu et al., 2015).

simple english wikipedia Zhu et al. (2010) propose a syntax-
based translation model for TS that learns operations over the parse
trees of the complex sentences. They outperform several baselines in
terms of Flesch index. Coster and Kauchak (2011c) train a phrase-
based machine translation (PBMT) system and obtain significant im-
provements in terms of BLEU (Papineni et al., 2002) over a baseline.
Coster and Kauchak (2011a) extend a PBMT model to include phrase
deletion and outperform Coster and Kauchak (2011c). Wubben et al.
(2012) also train a PBMT system for TS with a dissimilarity-based re-
ranking heuristic, outperforming Zhu et al. (2010) in terms of BLEU.
Narayan and Gardent (2014) built TS systems by combining discourse
representation structures with a PBMT model, which outperforms
previous approaches. Xu et al. (2016) modify a syntax-based MT sys-
tem in order to use a new metric – SARI – for optimization and to
include special rules for paraphrasing. Although their system does
not outperform previous work in terms of BLEU, it achieves the
best results according to SARI and human evaluation. Zhang et al.
(2017) train a lexically constrained sequence-to-sequence neural net-
work model for TS, based on the encoder-decoder architecture for MT.
The system outperforms baseline systems (including a PBMT system)
in terms of BLEU. Finally, Nisioi et al. (2017a) propose a model for
TS that is able to perform lexical replacements and content reduction.
They use a neural encoder-decoder approach where they combine
pre-trained (general domain and in-domain) word embeddings for
the source and target sentences. They also perform beam search, find-
ing the best beam size using either BLEU or SARI. Their best model
outperforms previous PBMT-based approaches in terms of BLEU.

newsela corpus To the best of our knowledge, Zhang and La-
pata (2017) is the only work that explores MT-based approaches on
the Newsela corpus. They train an attention-based encoder-decoder
model (Bahdanau et al., 2014) and use reinforcement learning with a

https://github.com/ghpaetzold/massalign
https://github.com/jbingel/ijcnlp2017_simplification
https://github.com/jbingel/ijcnlp2017_simplification
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reward policy combining SARI, BLEU and cosine similarity (to mea-
sure meaning preservation). Their approach shows improvements over
a PBMT system in terms of BLEU and SARI, but no insights are given
with respect to the transformations that are actually learned or how
distant from the original sentences the simplifications are. They also
experiment with the Simple Wikipedia corpus, yet do not outperform
Narayan and Gardent (2014) on this data.

The neural end-to-end model we implement as a baseline in this
paper is equivalent to that in Zhang et al. (2017) without the lexi-
cal constraints, while the statistical model is equivalent to the one in
Coster and Kauchak (2011c).

4.3 simplification via end-to-end models

In addition to requiring large amounts of training data, MT-based ap-
proaches to TS are limited because of their black-box way of address-
ing the problem. As we are going to show in this section, standard
end-to-end systems without special adaptation to TS do not succeed
in learning alternative formulations of the original text. With a few
exceptions (by the neural model), they tend to repeat the original text.
We conjecture that this is because, for most original-side material, TS
corpora do not consistently enough offer alternative simplified for-
mulations: in the majority of instances, most words are kept as in the
original.

To study the potential and limitations of end-to-end translation
models for TS, we build models using state-of-the-art MT-based ap-
proaches and the Newsela corpus, arguably the most reliable (profes-
sionally created) and realistic (aimed at a target audience rather than
research) resource to date.

the newsela corpus Newsela is a multi-comparable corpus,
where each document comes in up to six levels of simplicity, from
0 (original) to 5 (simplest).9 In our experiments, we only use sentence
pairs stemming from adjacent levels of simplicity within the same
document.10

Translation approaches require data aligned at the sentence level.
Given the original Newsela corpus, which only aligns different ver-
sions of the same document, we first align sentences using the algo-

9 The Newsela Article Corpus was downloaded from https://newsela.com/data, ver-
sion 2016-01-29.

10 The motivations for only using adjacent levels are (i) that we assume that these are
not “naturally” created (i.e. an expert would not start from an original text and
directly generate a level 5 text, but rather go from 0 to 1, 1 to 2, ..., 4 to 5), and
(ii) that the high degree of linguistic and stylistic differences between non-adjacent
levels makes learning even more complex. For example, the average edit distance for
sentences in the 0-1 group is 0.19, while for sentences in the 0-5 group, it is 0.65. As
far as the first reason is concerned, note that we could not find any publicly available
simplification guidelines for the Newsela corpus.

https://newsela.com/data
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rithms described in (Paetzold and Specia, 2016e). Their algorithms
search for the best alignment path between the paragraphs and sen-
tences of parallel documents based on TF-IDF cosine similarity and
an incremental vicinity search range. They address limitations of pre-
vious strategies (Barzilay and Elhadad, 2003; Coster and Kauchak,
2011c; Smith et al., 2010; Xu et al., 2015; Bott and Saggion, 2011)
by disregarding the need for (semi-) supervised training, allowing
long-distance alignment skips, and capturing N-to-N alignments. The
alignments produced are categorized as:

• Identical: The alignment is one-to-one and the sentences are
exactly the same (96,909 pairs across all adjacent levels).

• 1-to-1: The alignment is one-to-one and the original-simplified
sentences are different (130,790 pairs across all adjacent levels).

• Split: The alignment is 1-to-N (42,545 pairs across all adjacent
levels).

• Join: The alignment is N-to-1 (7,962 pairs across all adjacent
levels).

translation models . We built two types of models using state-
of-the-art MT-based approaches: a phrase-based statistical MT model
using Moses (Koehn et al., 2007),11 and a neural MT model using Ne-
matus (Sennrich et al., 2017).12 The Neural Text Simplification tool
(NTS) made available by Nisioi et al. (2017a) was also used for com-
parison.13

For our translation-based experiments, we consider two combina-
tions of sentence alignments, using (i) only one-to-one alignments
(1-to-1) (130,970 sentence pairs), and (ii) all alignments (all), i.e., the
entire sentence-aligned corpus with identical, 1-to-1, split and join
alignments (278,206 sentence pairs). The first type of data (1-to-1) is
the focus of this paper (see §4.4). The latter variant is included in
the experiments for comparison, in particular to address the question
whether more (but not necessarily better) data can aid data-intensive
translation-based approaches. For all experiments, the respectively
used data was first randomly split into training (80%), development
(10%) and test (10%) sets and normalized for entities (incl. names,
locations, numbers).

simplification quality. The first and second sections of Ta-
ble 4.1 show the results of translation-based systems according to
several metrics: similarity metrics commonly used in MT, comprising
BLEU (Papineni et al., 2002) and TER (Snover et al., 2006, minimum
edit distance), as well a specific text simplification metric, SARI (Xu

11 We follow instructions from http://www.statmt.org/moses/?n=Moses.Baseline

12 We use a vocabulary size of 30, 000 and the same parameters as in Sennrich et al.
(2016).

13 We use the same configurations as Nisioi et al. (2017a).

http://www.statmt.org/moses/?n=Moses.Baseline
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Hyp vs. Ref Hyp vs. Orig
System BLEU↑ TER↓ BLEU TER %Same↓ SARI↑

Moses (all) 69.64 30.20 98.77 0.41 93.03 27.45

Nematus (all) 36.46 52.66 45.40 42.30 21.60 22.91

NTS (all) 68.35 31.37 90.52 7.19 72.91 27.36

Moses (1-to-1) 57.79 40.19 98.30 0.86 89.50 24.58

Nematus (1-to-1) 46.90 52.84 76.29 20.10 30.45 29.89

NTS (1-to-1) 53.79 45.24 77.63 16.70 42.76 30.44

Silver op. (1-to-1) 67.33 22.66 61.63 26.01 10.83 61.71

Predicted op. (1-to-1) 41.37 48.72 59.71 25.24 14.06 31.29

Table 4.1: Performance of translation-based and operation-based TS models
(using silver or predicted operation labels, with only deletion

and replace applied). Metrics are BLEU and TER between simpli-
fied version (Hyp) and reference (Ref) or original version (Orig),
the percentage of sentences copied from the input (%Same), and
SARI for the simplifications.

et al., 2016). SARI measures how good the words added, deleted and
kept by a simplification system are, after comparing the produced
output to the original sentence and the simplification reference(s). It
is similar to BLEU but rewards copying words from the original sen-
tence. According to experiments performed by Xu et al. (2016), SARI
is the metric that best correlates with human judgments of simplicity.

For both “all” and “1-to-1” variants, the BLEU and TER scores be-
tween hypotheses and references are worse for Nematus, showing
that a baseline neural model tends to be more aggressive and poten-
tially generate noisier modifications than Moses equivalents. To mea-
sure how strongly the various approaches modify the input sentences,
these scores are also reported between the generated simplifications
and the original inputs. Again, these metrics are worse for Nematus-
based models, showing that they indeed perform more modifications
on the sentences. Moses in turn is very conservative, keeping 90-93%
of the test sentences exactly in their original version. SARI shows low
scores for all systems. NTS is also conservative in the “all” variant
(attested by the high BLEU score between hypotheses and original
sentences). For “1-to-1”, NTS produces more simplifications, diverg-
ing more from the original sentences.

sentence-level operations . Interestingly, even though Moses
and Nematus are trained on the same data, they differ substantially
with respect to what they can learn. This is demonstrated by an au-
tomatic inspection we conducted on the simplifications produced by
both systems trained over all types of sentence alignments, i.e. includ-
ing sentence splits and joins.
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Moses Nematus

Operation Count % Count %

Identical 25,882 93.03 10,906 39.20

1-to-1 1,920 6.90 15,428 55.45

Split 14 0.05 354 1.27

Join 4 0.01 1,132 4.07

Table 4.2: Count and proportion of instances affected by each type of simpli-
fication transformation performed by Moses and Nematus.

Table 4.2 reports the count and proportion of instances in the test
set representing types of sentence-level transformation between the
original and simplified sentence. It can be noted that Moses is much
more conservative than Nematus and simply tends to copy the origi-
nal as the output (“Identical” cases). However, as the majority (57%)
of aligned sentences in the professional Newsela simplifications are
edited, we do not consider copying a valid “simplification” in most
cases. Note also that Moses displays an excessively high BLEU score
between the original and hypothesis sentences (98.77), while the sim-
ilarity between the original and reference sentences is much lower
(71.57).

Manually inspecting some of the simplifications made, we find that
when it comes to sentence splits, both MT-based simplifiers seem to
be able to perform this type of transformation in an accurate way.
However, the proportion of such cases is very low (0.05% and 1.27%
for Moses and Nematus, respectively) compared to the proportion in
the gold data (13.5%) of the sentence pairs contain at least one split.

Moses only joins sentences in four cases, but these are all spurious
instances where a period is incorrectly removed. Nematus is more
successful at learning this type of operation. In most cases, it discards
entire clauses that contain less relevant content. For example, it sim-
plifies the sentence “Lincoln often cried in public and recited sad poetry,
according to Joshusa Wolf Shenk, who wrote a book called Lincoln’s Melan-
choly” to “Lincoln often cried in public and recited sad poetry”. We also
find a few examples where the content that is not discarded is rewrit-
ten to some extent, mostly for grammaticality. The Nematus simplifi-
cation of “Frank was what the instructors called a ‘rock star’; he emerged
as a leader who worked hard to keep the group together” onto “Frank was a
leader who worked hard to keep the group together ” is a good example of
that.

When it comes to 1-to-1 transformations, which can include a num-
ber of different operations (see §4.4), most transformations made by
Nematus consist of segment deletions, some of which are paired with
localized segment rewritings. As for Moses, most 1-to-1 outputs are
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Figure 4.1: Example of automatic labeling based on word alignments be-
tween an original (top) and a simplified (bottom) sentence in the
Newsela corpus. Unaligned words on the original side receive la-
bel ‘D’ (delete), while words that are aligned to a different form
receive ‘R’ (replace). Aligned words without an explicit label re-
ceive a ‘C’ label (copy). Sentences are from the Newsela Article
Corpus.

identical to the original except for a few spurious typographic and
punctuation changes. Because of that, Nematus simplifications are in
average four tokens shorter than both complex originals and Moses
simplifications.

A strong limitation of both models is their inability to address lexi-
cal complexity, performing very few lexical replacements. Most of the
sentences that are lexically simplified have only one word replaced
by another that does not preserve its original meaning. Take, for ex-
ample, the word clears in the sentence “It clears the way for troops on
the ground with its huge bullets”, which was replaced by gathers by
Nematus, and the word agribusiness, which was replaced by offering
by Moses in sentence “Older brother Nate has taken college courses on
livestock raising and agribusiness”. Some of these issues become more
evident in the human evaluation we performed comparing both end-
to-end systems to our proposed approach (§4.5.2).

4.4 simplification via sequence labeling

Our approach to TS differs from translation-based models by explic-
itly predicting a set of operations to be applied at different positions
in a complex sentence. Concretely, we tackle simplification as a se-
quence labeling problem, predicting operations at the token level
and applying them downstream. As there are no high-quality and
large-scale resources from which such operation sequences could be
learned, we first generate training data as explained below.14

14 For the experiments with the proposed TS approach, only 1-to-1 alignments are
suitable. It is indeed not realistic to expect that complex operations that involve sig-
nificant structural changes (e.g., splitting or joining sentences) could be modeled
using sequence labeling approaches. For such complex operations, we believe ex-
plicitly representing the sentences’ syntactic structures and learning abstract syntac-
tic transformation rules (e.g. as in Woodsend and Lapata (2011) or Feblowitz and
Kauchak (2013)) would be more advisable. However, we note that, as previously
shown, translation-based end-to-end approaches also fail to learn such complex op-
erations.
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Figure 4.2: Example of automatic annotation for label move (‘M’). Sentences
are from the Newsela Article Corpus.

4.4.1 Generating Training Data

Given 1-to-1 sentence pairs, our method for data generation identifies
deletions, additions, substitutions, rewrites (replacing or adding non-
content words), and reorderings performed between sentences pairs.

automatic operation annotation. The annotation process
uses the following set of operation labels: delete (D), replace (R),
and move (M) in the original (source) sentence; add (A) in the simpli-
fied sentence; and rewrite (RW) in both.15

We first generate word alignments between the original and simpli-
fied sentences using the aligner by Sultan et al. (2014). Based on these
alignments, we perform a word-level annotation for labels delete

and replace. Our heuristics are that if two words are aligned and
are not an exact match, then the corresponding label is replace. If
a word in the original sentence is not aligned, it must be a delete,
and if a word in the simplified sentence is not aligned, it is an add.
In any other case, the word receives label C (copy) or O (not part of
a simplification operation) in the original or simplified sentence, re-
spectively. For details, see Algorithm 1 in the supplementary material.
Figure 4.1 presents an example for our automatic labeling approach.
We consider rewrite labels as special cases of replace where the
words involved are isolated (not in a group of same operation labels)
and belong to a list of non-content words.

Finally, we label reorderings (move) by determining if the relative
index of a word (considering preceding or following deletions and
additions) in the original sentence changes in the simplified one (Al-
gorithm 2). See Figure 4.2 for an example. Words or phrases that are
kept, replaced or rewritten, may be subject to reorderings, such that
a token may have more than one label (e.g. replace and move). For
that, we extend the set of operations by the compound operations
replace+move (RM) and rewrite+move (RWM).

evaluation of automatic labels . To test our algorithms, we
compare their output to manual annotations for 100 sentences from
level pair 0-1 of the Newsela corpus. The manual annotations were

15 Target-side annotations serve for analysis; they are ignored in our experiments as
they are unavailable at test time.
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Label Prec. Rec. F1 Support

A 0.66 0.92 0.77 261

D 0.76 0.90 0.82 371

M 0.17 0.92 0.28 24

R 0.70 0.39 0.50 71

RM 0.22 0.33 0.27 12

RW 0.24 0.07 0.11 57

RWM 0.00 0.00 0.00 6

C 0.99 0.94 0.96 1932

O 0.99 0.95 0.97 2112

avg / total 0.92 0.92 0.92 4846

Table 4.3: Per-label performance of automatic annotation of operations.

Automatically Annotated

A D M R RM RW RWM C O

A 240 0 0 0 0 2 0 0 19

D 15 333 8 4 5 1 1 4 0

M 0 1 22 0 0 0 0 1 0

R 0 33 0 28 6 0 0 4 0

RM 0 8 0 0 4 0 0 0 0

RW 3 31 4 7 2 4 0 6 0

RWM 0 6 0 0 0 0 0 0 0

C 0 24 98 1 1 1 0 1807 0

O 105 0 0 0 0 9 0 0 1998

Table 4.4: Confusion matrix of true (rows) and automatically annotated
(columns) operations on the manually annotated data.

performed by four proficient English speakers. For 30 of those sen-
tences, we calculated the pairwise inter-annotator agreement between
annotators, yielding an average kappa value of 0.57. We obtain an ac-
curacy of 0.92 for all labels, and a micro-averaged F1 score of 0.70 for
all positive labels (i.e. excluding ‘C’ and ‘O’). Table 4.3 presents de-
tails on the performance of our annotation algorithms over the iden-
tified operations. Of the positive labels, the algorithms annotate most
accurately additions and deletions. According to the confusion ma-
trix in Table 4.4, the relatively low ability of capturing replacements
is due to labeling them as deletions. This is mainly caused by word
miss-alignments and by parser errors that our heuristics cannot re-
cover from. The same logic applies for labels replace+move and
rewrite+move. We are also able to capture most movements (high
recall), but our reordering heuristic still requires improvement.
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We refer to these automatically generated labels as silver labels.
As we describe in the next sections, the corpus annotated with these
labels will be used to train our sequence labeling approach, eliminat-
ing the need for costly human-annotated data (i.e. gold labels). As a
second way of evaluating the quality of our automatic labeling, we
use these silver labels in a semi-oracle trial where we apply the ac-
tual simplification operations as given in the annotated corpus. In
other words, we simply take the automatic labels as true and use
the alignments between original and simplified words to apply the
actual operations. This is what we refer to as silver operations in
Table 4.1. Using the automatic labeling would lead to much more ac-
curate and less conservative simplifications than all translation-based
approaches: it achieves the highest SARI and BLEU scores, and the
lowest rate of copied input sentences among all systems tested using
the 1-to-1 alignments. Therefore, the challenges now are (i) to predict
such labels (§4.5.1), and (ii) to devise high-performing TS modules to
apply simplification operations for each type of label (§4.4.2).

4.4.2 Application of Operations

For our experiments (§4.5), we consider two of the operations that our
algorithms can identify with high precision: delete and replace.16

Applying deletions is straightforward and amounts to simply omit-
ting the respective token when generating the hypothesis sentence.
For the replace operation, we use the supervised Lexical Simplifica-
tion approach of Paetzold and Specia (2017c). Their simplifier gener-
ates candidate substitutions for target words using parallel complex-
to-simple corpora and retrofitted context-aware word embedding mod-
els, selects the ones that fit the context of the target word through
the unsupervised boundary ranking approach, then ranks candidates
using a supervised neural ranking model trained over manually an-
notated simplifications. It also performs a final confidence check step:
the target is only replaced by the highest ranking candidate if the tri-
gram probability of two words preceding the target is higher for the
candidate.

4.5 experiments

Based on the automatic annotation procedure outlined above, we gen-
erate sequence annotations of 1-to-1 simplification operations in the

16 We focus on this subset of operations since we currently lack good models to apply
to the remaining operations. add, for example, would presume access to an external
resource such as a knowledge base that would serve as a basis for inferring added
content (which is oftentimes background information, for example an explanation
that a certain person has a certain function). The results we obtain can thus be viewed
as a lower bound on the simplification quality that can be expected from a model
that integrates other operations.
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Label Prec. Rec. F1 Support

D .30 .49 .37 58,692

M .21 .16 .18 29,719

R .13 .34 .19 7,208

RM .00 .00 .00 2,817

RW .14 .07 .10 646

RWM .00 .00 .00 141

C .68 .51 .58 154,481

avg / total .51 .45 .47 253,704

Table 4.5: Per-label performance of automatic operation prediction with the
LSTM model.

Newsela corpus. On this data, we explore the questions (i) whether
we can predict simplification operations to be performed on unseen
data, and (ii) to what degree the prediction of these operations allows
us to generate good simplifications.

4.5.1 Prediction of Simplification Operations

To predict simplification operations for each input word, we train
a bidirectional recurrent neural network, with an initial embedding
layer of size 300 and two hidden LSTM (Long-Short Term Memory)
layers of size 100. The training is done using Keras (Chollet, 2015),
with a batch size of 64, categorical cross-entropy loss and a dropout
rate of 0.2 after the hidden layers. We optimize the model with Ada-
grad (Duchi et al., 2011). We monitor the tagging accuracy on held-
out development data and employ early stopping when the develop-
ment loss increases. We repeat this process ten times with random
initializations and select the best model based on development set
accuracy.

Table 4.5 shows that the LSTM model does not predict the silver la-
bels very well. In particular, the model is relatively conservative with
respect to the prediction of simplification operations, and tends to
overpredict the majority class (i.e., to copy a token).17

delete is the
operation that our model predicts best. Table 4.6 shows the relative
confusion of predicted operations versus the silver labels, and con-
firms that the main error type of our system is to keep a token rather
than performing some simplification operation on it. We also see a
tendency for other operations to be predicted as deletions.

The results in the lower part of Table 4.1 (“Predicted operations (1-
to-1)"), however, show that even though the operation predictions are

17 By weighting the loss function by the ground truth class support at each timestep,
we were able to alleviate the effect of a predominant majority class to some degree.
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Predicted

D M R RM RW RWM C

D .49 .06 .07 .00 .00 .00 .38

M .41 .16 .05 .00 .00 .00 .38

R .23 .05 .34 .00 .00 .00 .38

RM .32 .09 .21 .00 .00 .00 .38

RW .38 .00 .00 .00 .07 .00 .54

RWM .62 .03 .00 .00 .04 .00 .32

C .33 .09 .06 .00 .00 .00 .51

Table 4.6: Confusion matrix of true (rows) and predicted (columns) opera-
tions on the test data.

far from the silver labels, our system is able to generate simple output
by only applying the delete and replace operations. In particular,
our method achieves a better SARI score than all the baseline systems
on the 1-to-1 alignments. As we consider the extrinsic evaluation of
the final TS results to be more indicative of the quality of our model
than its intrinsic evaluation in the sequence labeling task, we view
this as a positive result.

4.5.2 Human Evaluation

We finally conduct a human evaluation of 100 simplifications pro-
duced by five simplifiers:

• The experts’ Reference simplification.

• The Moses simplifier (1-to-1).

• The Nematus simplifier (1-to-1).

• The NTS simplifier (1-to-1).

• Our Sequence Labeling (SL) simplifier.

Human evaluators (four NLP experts) are given the original sen-
tence and the simplification in each of the above versions, and are
asked to judge each of them with respect to their grammaticality (G),
meaning preservation (M) and simplicity (S), using a Likert scale be-
tween 1 (worst) and 5 (best) for each aspect. We define “simplicity"
as the extent to which the sentence was simpler than the original and
thus easier to understand. A control set of 20 sentences is evaluated
by all annotators in order to compute inter-annotator agreement.
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G M S

Reference 5.00±0.0 4.45±0.9 2.70±1.3

SL 4.16±1.0 3.91±1.1 1.66±0.9

Nematus 4.49±0.9 3.99±1.2 1.46±0.9

Moses 4.98±0.2 4.99±0.1 1.14±0.4

NTS 4.75±0.6 4.08±1.3 1.53±1.0

Fleiss’ Kappa 0.372 0.457 0.342

Table 4.7: Average scores and standard deviation for grammaticality (G),
meaning preservation (M) and simplicity (S) for the systems eval-
uated. The last row shows the inter-annotator agreement scores in
terms of Fleiss’ Kappa.

Table 4.7 illustrates the average scores and standard deviations
obtained by each system according to each criterion. As expected,
the Moses simplifier obtains the highest grammaticality and mean-
ing preservation scores, but the lowest simplicity scores, given that
it tends to merely reproduce the input. Although Nematus and NTS
manage to obtain slightly higher simplification scores, they still av-
erage very close to the lower end of the simplicity scale. Our SL ap-
proach, in turn, shows significantly higher simplicity scores than the
other systems (according to a t-test with p < 0.05). Its less conser-
vative edits, however, may in some cases come at the cost of lower
scores for grammaticality and meaning preservation. The last row in
Table 4.7 shows the values of inter-annotator agreement in terms of
Fleiss’ Kappa for each evaluation aspect. Table 4.8 exemplifies some
of the sentences for which our system was rated better and worse
than the baselines. It is important to mention that, although the first
two reference simplifications in Table 4.8 feature only minor punctu-
ation changes, only 2,538 references (0.8%) in the dataset are of this
type.

4.6 conclusions and further work

We presented a novel approach to sentence simplification that uses
automatically labeled training data from a large simplification cor-
pus. Based on this annotated corpus, we devise a sequence labeling
approach to text simplification that predicts simplification operations
for individual words in the original sentence. Specific modules are
then triggered to deal with each predicted operation. The experi-
ments reported here cover only deletions and lexical substitutions
as operations.

Our approach has several theoretical advantages over end-to-end
translation models, including easier interpretability of the types of
simplification learned, as well as the possibility for late decoding for
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SL better than other Moses, Nematus and NTS

O Kyarra Garrett has learned how to take blood pressure and perform
CPR – and she is not even out of high school yet.

R Kyarra Garrett has learned how to take blood pressure and perform
CPR, and she is not even out of high school yet.

M Kyarra Garrett has learned how to take blood pressure and perform CPR – and
she is not even out of high school yet.

N UNK Garrett loves out to take blood pressure and perform, and she is not even
out of high school yet.

T Chance Garrett has learned how to take blood pressure.

L Kyarra Garrett has learned how to take blood pressure and perform CPR.

O in her mind she stops at particular locations to pick up the correct
cookie crumbs.

R in her mind, she stops at particular locations to pick up the correct
cookie crumbs.

M in her mind she stops at particular locations to pick up the correct cookie
crumbs.

N she stops at particular locations to pick up the correct cookie UNK.

T in her mind she stops at particular locations to pick up the correct cookie mo-
mentum.

L in her mind she stops at particular areas to pick up cookie crumbs.

SL worse than Moses, Nematus or NTS

O despite the limitations, Palestinian cooking is not without its fans.

R despite the limitations, Palestinian cooking has its fans.

M despite the limitations, Palestinian cooking is not without its fans.

N Palestinian cooking is not without its fans.

T even Palestinian cooking is not without its fans.

L despite the limitations, Palestinian cooking is not without its fans.

O “we always thought there has to be a more efficient way of doing this,”
Zach Fiene said.

R he said he always thought there had to be a better way of doing it.

M “we always thought there has to be a more efficient way of doing this,” Zach
Fiene said.

N “we always thought there has to be a more efficient way of doing this,” said
Zach Ghani, who is the 18-year-old said.

T Zach Fiene said there has to be a more efficient way of doing this.

L “we always thought there has to be more efficient way doing this said.

Table 4.8: Example including original (O) and reference (R) sentences from
the Newsela Article Corpus, and outputs generated by Moses (M),
Nematus (N), NTS (T) and our sequence labeling approach (L).
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adaptive simplification. In practical terms, we showed that our system
outperforms translation-based approaches on a number of metrics
and overcomes the problems of excessive repetition of the original
content.

According to human evaluation, our system achieves higher sim-
plicity scores than the baseline systems, although this comes at the
cost of slightly lower meaning preservation and grammaticality. We
hypothesize that some of the problematic cases stem from not realiz-
ing the addition operation. In general, our approach will likely profit
from good models for the remaining operations, especially those that
can also operate on spans of several tokens, making research on such
models a natural direction for further work.
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C H I L D R E N W I T H R E A D I N G D I F F I C U LT I E S

abstract

We present the first work on predicting reading mistakes in children
with reading difficulties based on eye-tracking data from real-world
reading teaching. Our approach employs several linguistic and gaze-
based features to inform an ensemble of different classifiers, includ-
ing multi-task learning models that let us transfer knowledge about
individual readers to attain better predictions. Notably, the data we
use in this work stems from noisy readings in the wild, outside of con-
trolled lab conditions. Our experiments show that despite the noise
and despite the small fraction of misreadings, gaze data improves
the performance more than any other feature group and our models
achieve good performance. We further show that gaze patterns for
misread words do not fully generalize across readers, but that we
can transfer some knowledge between readers using multitask learn-
ing at least in some cases. Applications of our models include partial
automation of reading assessment as well as personalized text simpli-
fication.

5.1 introduction

Reading disabilities are impairments affecting individuals’ access to
written sources, with downstream effects such as low self-confidence
in the classroom and limited access to higher education. Dyslexia, for
instance, while being highly prevalent with estimates reaching up to
17.5% of the entire population of the U.S. (Interagency Committee
on Learning Disabilities, 1987), often goes undiagnosed, such that
unattributed weaknesses in reading comprehension further intimi-
date affected persons. Due to these severe and broad-ranging impacts
of reading difficulties, many governments have implemented early
screening tests for dyslexia and other reading difficulties and provide
special training and assistance for struggling readers throughout the
educational system and into adulthood.

In Denmark, for example, such programs provide children with
specialist training through focused multi-week reading courses in
one-on-one or small group settings. Still, the specialized teachers can
only attend to one student at a time when closely monitoring their
reading, and the quality of any analysis is strictly limited by the
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Figure 5.1: Scanpath and fixations (blue circles) when reading a sentence.
This particularly clear example from our dataset shows extended
processing time for misread words (marked in red).

human observer’s processing “bandwidth" while attending the live
reading.

As a possible mitigation, advances in eye-tracking technology–in
particular the increased availability of eye trackers–have made it pos-
sible to reliably record children’s gaze during reading, both allow-
ing teachers to attend to their students’ reading post-hoc as well as
providing additional insight into reading strategies based on gaze, in-
cluding the development of these strategies over time. For the teacher
to track and keep records of reading mistakes (henceforth referred to
as misreadings), however, the students are still required to read out
loud, and the teacher has to review the entire reading and annotate
for misreadings.

In this work, we investigate to what extent we can predict mis-
readings from gaze patterns for individual words. While the aim is
not to fully automate reading reviews, being able to successfully pre-
dict misreadings from gaze data can be part of a semi-automatic sys-
tem for reading quality assessment and increase teacher efficiency by
pointing out potential misreadings for closer review.

Another motivation for this work comes from text simplification, in
particular from the observation that individuals’ highly specific read-
ing strengths and weaknesses require text simplification models to
be customized to specific users in order to unfold their full potential
and truly be helpful. Predicting misreadings in concrete reading sce-
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narios and based on individual gaze patterns can be used as a first
step in the typical lexical simplification pipeline (Shardlow, 2014b).18

This task, known as complex word identification, has received a con-
siderable amount of attention in the literature, but has exclusively
been approached in a user-agnostic fashion.

The data used in this study are gaze recordings of children with
reading difficulties, reading Danish texts assigned by their reading
teacher as part of their reading intervention. The recordings stem
from EyeJustRead, an eye-tracking based software used in special
reading intervention in Danish schools.19 In Section 5.3, we discuss
further aspects of the treatment of gaze data in general and the col-
lection of the data used in this study in particular.

While the difficulty of processing a word is undoubtedly reflected
in the fixation time on that word (Rayner et al., 1989), many other fac-
tors affect fixation durations, the most prominent being word length
and word frequency, but also predictability and relative position in
sentence have strong effects–see Figure 5.1 for a particularly clear ex-
ample from our dataset. Notably, almost all analyses of eye-tracking
reading data use data collected in research laboratories, where these–
otherwise confounding–factors can be controlled for. We show that
we can perform reasonable misreading detection on real-world eye
tracking data, including a limited number of textual features to con-
trol for these factors.

contributions a) We present the first work on the automatic de-
tection of misreadings based on gaze patterns of children with read-
ing difficulties. b) This is, to the best of our knowledge, the first at-
tempt at modeling noisy, real-world eye-tracking data from readers. c)
We also present, to the best of our knowledge, the first published re-
sults using a multi-task learning setup to transfer knowledge between
individual readers for personalized, complex word identification.

5.2 related work

Our work is a special case of complex word identification, a task that
has recently received a significant amount of interest, including two
shared tasks (Paetzold and Specia, 2016b; Yimam et al., 2018). The
most successful approaches to these tasks had in common that they
employed ensembles of classifiers that learned from a number of se-
mantic and psycholinguistic features. Note however, that these previ-

18 While today it may hardly sound plausible to equip each laptop with an eye-tracker
in order to track people’s reading, further technological advances may well make
this possible in the future. Recent development in eye-tracking technology has taken
it from expensive research equipment to a gaming interface with a price point as low
as $100.

19 http://www.eyejustread.com

http://www.eyejustread.com
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ous approaches to complex word identification aimed at developing
generic models that took no account of any specifics of a certain user.

Children’s eye movements during reading are not as well-studied
as adults’, and previous studies typically analyze data collected in ex-
periments designed for research. The overall established observations
with regards to reading development are: older children have shorter
fixation durations, fewer fixations and fewer regressions. They have
a higher skipping probability and also higher saccade amplitude. See
Blythe and Joseph (2011) for a review. It is not conclusive whether
these variations follow chronological age or their increased reading
proficiency. Regardless of the underlying cause, due to the observed
systematic differences, the standard procedure is to control as closely
as possible for age and reading proficiency level when designing read-
ing experiments.

There are several psycholinguistic studies that show that also in
children, the typicality and plausibility of sentences (Joseph et al.,
2008) as well as temporary sentence ambiguity (Traxler, 2002) can be
traced in eye movements, suggesting that also other types of compre-
hension difficulties are reflected in the reading patterns.
Using gaze data to augment models is a recent addition to NLP. Pre-
vious approaches that have used gaze data in the context of natural
language processing include the work of Barrett et al. (2016), who aim
to improve part-of-speech induction with gaze features, Klerke et al.
(2016), where gaze data is used as an auxiliary task in sentence com-
pression, and Klerke et al. (2015b), where gaze data is used to evaluate
the output of machine translation. The most related work is Klerke
et al. (2015a) and Gonzalez-Garduño and Søgaard (2017). Klerke
et al. (2015a) compared gaze from reading original, manually com-
pressed, and automatically compressed sentences. They found that
the proportion of regressions to previously read text is sensitive to the
differences in human- and computer-induced complexity. Gonzalez-
Garduño and Søgaard (2017) show that text readability prediction
improves significantly from hard parameter sharing when models try
to predict word-based gaze features in a multi-task-learning setup.
All of these works, however, use gaze data that was collected under
laboratory conditions from skilled, adult readers.

5.3 gaze data

In eye-tracking studies, gaze data is normally sampled under ex-
perimental circumstances, where e.g. instructions, location, environ-
ment, lighting, participant sampling, textual features, order, duration
etc. are controlled for. Our real-world data, on the contrary, lacks
all of these controls. While in controlled, cognitive psychology experi-
ments, fixation durations have proven to systematically correlate with
cognitive load (see Rayner (1998) for a review), eye movements from-
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real world applications have been largely understudied, and specific
findings from the literature on controlled data may not apply here or
may be swamped by extraneous factors. Further, the often-used statis-
tical tests of significant differences between gaze patterns lose some
of their legitimacy when data is retrieved under noisy conditions.

5.3.1 Data collection and preprocessing

The data we use in this work is collected in Danish schools using
commercial software specifically developed to record and track chil-
dren’s reading development. The system records the eye movements
and voice while the children are reading aloud. The teacher can af-
terwards replay the reading along with the recorded eye movements.
The software performs some low-level eye-movement analyses to help
the teacher understand how the child processes the text. The teacher
can mark which words are erroneously read by the child and later
access this and other basic statistics about the reading – see Klerke
et al. (2018) for a workflow description. The genre is children’s fiction
books and the children read contextualized, running text.

As the data is fairly noisy compared to data from laboratory-based
eye tracking experiments, we perform thorough cleaning before run-
ning any experiments. This cleaning procedure is described below.
Table 5.1 contains a summary of the dataset sizes after each clean-
ing step. Before any cleaning is performed, the dataset contains 369

reading sessions from 95 unique readers. In total it has 3,161 read
pages.

help word activated on page We start by removing all pages
where the reader activated the help word function, which dynami-
cally isolates and enlarges a single word on the screen. This dynamic
display generates a series of eye movements that do not resemble
typical reading activity. This step removes 94 pages.

fixation detection We pre-process the raw gaze data by first
detecting fixations using a custom implementation of the algorithm
of Nyström and Holmqvist (2010). We remove fixations shorter than
40ms and longer than 1.5s.20 For the calculation of gaze features (see
below), we further discard all data points that are not detected as a
fixation on text (but instead on images or blank parts of the page). We
remove 19 pages where we do not have any fixations on text (e.g. due
to the reader just browsing through a book or because of technical
issues).

20 Removing short fixations also removes the majority of blinks which presents as a
sudden downward-upward pattern of saccades separated by a pause in the signal
or a short, falsely detected fixation.
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bad calibration Prior to reading, the student is prompted to
calibrate the eye tracker. In the data used in this study, most reading
sessions (91%) attain the best calibration score on a five-point scale,
while 6% miss a calibration score. The remaining 3% do not have the
best calibration score. We remove everything but the 91% with the
best calibration score.

Only parts of the readings have been reviewed and marked for mis-
readings by a teacher. However, whether a teacher reviewed a read-
ing or not is not explicitly encoded in the data. Thus, if there are no
marked misreadings in some session, we do not know whether this is
because this reading was not reviewed or because there actually were
no errors. We therefore remove all readings without any marked mis-
readings, as well as any data before the first marked misreading and
after the last marked misreading within marked sessions, assuming
that everything between these two points has been marked. Twelve
cleaned reading sessions only consist of one misread word – every-
thing before and after was removed. See Figure 5.2(a) for an overview
of the distribution of number of words per reading after this clean-
ing step. This leaves us with the subset of the readings that posed
most problems for the subjects. Figure 5.2(b) shows the distribution
of misread words in the cleaned dataset. It is worth noting that since
this is not controlled, experimental data, “misread" is not necessarily
interpreted equally by all teachers, or even consistently across mark-
ings from the same teacher, due to the lack of an annotation protocol.
We assume that “misread" means that the pronounced word deviates
substantially from the written word. Ultimately, we retain 83 reading
sessions from 44 readers with at least one misread word.

5.3.1.1 Apparatus

The eye tracker used is a Tobii Eye Tracker 4C with a sample rate
of 90 Hz. It is an affordable, consumer eye tracker targeted at gam-
ing. The laptop computers to which the trackers are attached, and
which run the software, are provided by the different institutions and
vary. Screen resolution is locked by the eye tracker software to 1366

x 768, and most systems reportedly run on a 14"–15.6" monitor. The
font size is 50pt, which is equivalent to approximately 6mm x-height.
Distance between baselines was approximately 18mm with the most
commonly used font–otherwise 24mm.

5.3.1.2 Subjects

The cleaned dataset contains 44 unique readers with different reading
durations. Readers are probably between 5 and 15 years old, which
is the official age of students in the Danish schools, but we do not
know their exact ages. To control for reading proficiency, we include
the texts’ readability scores as a feature in all experiments. All stu-
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Figure 5.2: Distributions of total number of words and misreading ratios per
session after cleaning.

dents receive extra reading classes, because they struggle with read-
ing. Many of them are probably dyslexic, but we do not have access to
this information. Because this is not experimental data, the students
will have received different instructions from the teachers. We do not
know if they picked the text themselves or for how long they read
prior to each recording. They are not necessarily alone in the room,
but it is a fair assumption that they all make an effort to read cor-
rectly because they are recorded. The data comes from a number of
different systems that we were informed is in the range between 10

and 20, but the actual number of schools and teachers is unknown to
us. All children and their parents gave consent that the anonymized
eye-tracking data may be used for this research.

5.3.2 Features

Reading patterns have been shown to be influenced by a number
of factors, including textual features and the instructions given to a
reader, such as encouraging a specific reading strategy. Readers, or
different groups of readers, furthermore display individual reading
styles which affect the eye movements (Benfatto et al., 2016). Other
factors include the reader’s individual skill level, cognitive abilities
and mood, among others.

We extract a number of gaze features that have been associated
with processing load. Some of our gaze features directly reflect the
processing load associated with a word, especially the two correlated
measures total fixation duration and number of re-fixations, but also the
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mean fixation duration. Some gaze features are included to account for
preview effects (whether the next or previous word was fixated) as
well as the scan path immediately surrounding the word. We split the
gaze features into two groups: Gaze (W) for features directly associ-
ated with word-level processing and Gaze (C) for features associated
with the eye movements on the immediate context of the word. All
features are scaled to the [−1, 1] interval.

We further extract a number of basic features that are known to
affect gaze features and thus need to be controlled for. These include
word length and word frequency (Hyönä and Olson, 1995), but also
position in sentence (Rayner et al., 2000) and position on the page
have shown to affect reading for adults. We also include a range of
linguistic features that we expect to describe word difficulty. All fea-
tures and feature groups are listed in Table 5.2 and described below.

gaze features During reading, the reader performs a series of
stable fixations of a couple of hundred milliseconds duration on aver-
age. Between fixations, the eyes perform rapid, targeted movements,
called saccades. All gaze features are computed on the word level and
use the application’s definition of the area of interest surrounding
each word.

For gaze duration, we extract both late and early processing mea-
sures. Late measure such as total fixation duration and number of re-
fixations reflect late syntactic and semantic processing in skilled adult
reading (Rayner et al., 1989). For children with reading difficulties,
we assume these measures to likely reflect processing difficulty.

For the first three passes over a word, we also extract the direction
and the word distance of both the ingoing and outgoing saccade.21

These six features are expected to map the activity around the word
and, for example, show whether some word was part of sequential,
forward reading or occurred in a series of erratic saccades.

Four features indicate the landing positions of fixations in four equally-
sized parts of the display width of a word. This captures whether a
word, for instance, has three fixations on the last quarter of its dis-
play width, which would be atypical and suggest that the reader is
struggling with the ending of this word. We further explicitly encode
the landing position of the first and last fixation. Note that because
of the anatomy of the eye, eye tracking can never be pixel-accurate,
but has at least 2° inaccuracy. For short words (or words printed very
small, which does not apply for this study) these features may be
misleading.

21 As we removed everything that was not a fixation on text before calculating the gaze
features, intermediary non-text fixations may have occurred between text fixations,
such as image fixations. We count the last/next fixated word. For example, if a word
has index 5, and the first pass incoming saccade is from word index 4, we get a
feature value of -1 for first pass ingoing.
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Basic Gaze on Word (W)

Is bold Number of fixations on word

Is italic First fixation duration

Is lowercase Mean fixation duration

Is uppercase Total fixation duration

Has punctuation Count of passes over the word

Line index on page Left pupil size

Word index on line Right pupil size

Page number Refixation counts

Position in sentence (relative) Fixations in first quarter count

Position in sentence (absolute) Fixations in second quarter count

Sentence length (characters) Fixations in third quarter count

Sentence length (words) Fixations in fourth quarter count

Word index Relative landing position of first fixation

Sentence index Relative landing position of last fixation

Word length (characters) Average character index of fixations

Gaze in Context (C) Linguistic

1st pass ingoing saccade dist. and dir. LIX score for entire text

1st pass outgoing saccade dist. and dir. Previous occurrences of word stem in text

2nd pass ingoing saccade dist. and dir. Previous occurrences of word type in text

2nd pass outgoing saccade dist. and dir. Vowel count

3rd pass ingoing saccade dist. and dir. Character perplexity

3rd pass outgoing saccade dist. and dir. Word frequency

Next word fixated Universal POS tag

Previous word fixated

Table 5.2: Overview of the feature groups used in the experiments.
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The data also provides pupil sizes for both eyes. It is well known
that the pupil dilates as response to external lighting factors, but
there is also evidence that the pupil systematically–but on a much
smaller scale–dilates as a response to mental state, emotions or con-
centration (Beatty, Lucero-Wagoner, et al., 2000). In an experiment
collecting pupil size, one would control lighting, which was not pos-
sible in the present scenario. For all pupil measures, we subtracted
the same side mean of the reading session. We confirmed that all
changes larger than 0.6 times the mean were captured when remov-
ing short fixations, as they may be caused by the tracker mistaking
eyelashes for pupils during blinks.

basic features The basic features span 16 textual and presen-
tational features that are either directly accessible via the system or
easily obtainable. They are included in all our experiments and serve
as control features for the gaze features because we expect them to ex-
plain some of the variance in the gaze features, e.g. reading changes
over the course of a line and the course of a sentence (Just and Car-
penter, 1980). We further encode the line number a word is located in
on a page, as well as its position in that line.

linguistic features The linguistic features include the abso-
lute vowel count, which in Danish is highly correlated with the num-
ber of syllables. Universal POS tags are obtained from the Danish
Polyglot tagger.22 We also include the provided Läsbarhetsindex (LIX)
(Björnsson, 1968), a Swedish readability metric (commonly also ap-
plied to Danish) that considers the mean sentence length and the
ratio of long words (more than 6 characters). The log word prob-
ability is estimated from a language model we train on the entire
Danish Wikipedia (downloaded in November 2017) using KenLM
(Heafield, 2011). Frequency affects processing load and thus fixation
duration for adults as well as dyslexic and neurotypical Finnish chil-
dren (Hyönä and Olson, 1995), but there is conflicting evidence as
to whether text frequencies from adult text explain variance in chil-
dren’s eye movements (Blythe and Joseph, 2011). Character perplex-
ity is estimated using a 5-gram character language model, also using
KenLM on the Danish Wikipedia. The previous occurrence of stems
and word types is included as reading time for low-frequency words
has shown to decrease on later repeats in a text (Rayner et al., 1995).
We use NLTK’s snowball stemmer for Danish.

5.4 model

In preliminary experiments, we observed that the relatively small
overall amount of data, as well as the low fraction of positive in-

22 http://polyglot.readthedocs.io

http://polyglot.readthedocs.io
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Feature group F1

basic 18.78 †

+ gaze (w) 40.50 *

+ gaze (c) 18.49 †
+ linguistic 19.24 †

+ gaze (w) + gaze (c) 41.19 *

+ gaze (w) + linguistic 41.08 *

+ gaze (w) + linguistic 18.65 †

All features 40.42 *

Table 5.3: Performance across feature groups for Experiment 1. Scores are
averaged F1 over ten cross-validation folds. Using an independent
t-test, * and † indicate results from ten cross validation rounds
significantly different from basic and the best feature combination
basic + gaze(w) + gaze(c), respectively.
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Figure 5.3: Words and misreading counts for readings of three readers in
cross-user experiment

stances, caused significant variation between repeated random re-
starts of various classification algorithms. We thus approach the task
of predicting misreadings from gaze with ensemble methods, train-
ing N classifiers independently on the same data and letting them
vote on the instances in a held-out development set. Using this devel-
opment set, we then optimize a threshold t, which is the fraction of
the number of classifiers that need to cast a positive vote on an item
before we accept it as such.

All of our ensembles consist of 10 random forest classifiers and
10 feed-forward neural networks. The random forests, in turn, con-
sist of 100 trees that create splits based on Gini impurity (Breiman,
2001). The neural network models are implemented in Pytorch and
trained with the Adam algorithm (Kingma and Ba, 2014), with an ini-
tial learning rate of 3 · 10−4 and a dropout rate of 0.2 on the hidden
layers, whose number and sizes we vary in our experiments. We fur-
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UserId Number of Words per reading Thereof misread

reading sessions Mean std.dev. Mean std.dev.

10 7 285.9 67.5 16.6 9.9

15 6 219.2 148.1 5.0 2.3

16 5 91.6 32.7 8.0 3.1

Table 5.4: Statistics of (misread) words in sessions for the three readers with
most readings.

ther employ early stopping, monitoring the loss on the development
set with a patience of 30 steps.

5.4.1 Multi-task learning for cross-user knowledge transfer

One of the central questions we investigate in this paper is to what
degree gaze patterns for misread words vary between readers, and
whether we can learn to transfer knowledge about predictors of mis-
readings between readers. We address these questions in the experi-
ments reported in Section 5.5.2, for which we use a multi-task learn-
ing (MTL) model that employs hard parameter sharing. MTL has re-
ceived significant attention in the natural language processing com-
munity over the past years (see Bjerva (2017a) for a review). One of
the most intriguing properties of MTL is that it allows for the transfer
of knowledge between different tasks and datasets, which has been
investigated and exploited in a growing number of works (Klerke
et al., 2016; Martínez Alonso and Plank, 2017; Bingel and Søgaard,
2017), including work on the identification of complex words (Bingel
and Bjerva, 2018).

In this work, we view the different readers as different tasks, moti-
vated by Bingel and Bjerva (2018), who interpret different languages
as different tasks for cross-lingual complex word identification. We
define a feed-forward neural network model with one output layer
per reader, all of which are dense projections from a shared hidden
layer. In this framework, each training step consists of flipping a coin
to sample any of the tasks and retrieving a batch of training data for
this task. This batch is then used to optimize both the shared and the
respective task-specific parameters. For a detailed definition of the
model, see Bingel and Bjerva (2018).
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5.5 experiments

5.5.1 Experiment 1: Across entire dataset

As a first experiment, we investigate the performance of our mod-
els and the predictiveness of the individual feature groups through
10-fold cross validation across the entire dataset. At each fold, we re-
serve one tenth of the data for testing and another tenth to monitor
validation loss of the network as the early stopping criterion.

Note that we split the data randomly and do not stratify the cross-
validation splits in any way. In conjunction with the strong class im-
balance, this means that we are likely to encounter very different class
distributions across splits. This setup may generally lead to lower per-
formance scores, likely with greater variance. However, this was a
deliberate choice as we cannot assume a consistent class distribution
across train and test set in the real world, or in fact hardly any prior
knowledge with regards to class distribution in the test set. Random
splitting also means that data from the same reading will likely be dis-
tributed across train and test partitions for a certain cross-validation
iteration.

We perform a first baseline experiment with only the basic features
that we list in Section 5.2. On top of this baseline feature set, we
perform further experiments, incorporating all combinations over the
other feature groups. The results we present in Table 5.3 are based on
the best respective model architecture for each feature combination,
evaluated via the average over validation splits.23

5.5.2 Experiment 2: Cross-reader prediction

without reader’s own data In a second experiment, we are
interested in how well our model can predict misreadings for specific
readers. For this, we identify the three readers with most reading ses-
sions and perform a range of experiments, testing our models on the
readings of each of these readers after training them on all other data.
We denote the three most active readers by their unique, anonymized
IDs as they appear in the dataset: 10, 15 and 16. These readers have 7,
6 and 5 recorded and marked readings, respectively, and we present
statistics on these readings in Table 5.4 and Figure 5.3. As in the pre-
vious experiment, we optimize our model through cross validation
to tune hyperparameters and perform early stopping. We report test
data results for the model with optimal validation performance in
Figure 5.4, broken down into each reader’s different sessions.

23 To address the variation in input dimensionality as we consider different feature
group combinations, we train models with different architectures: (i) a single hidden
layer with 20 units, (ii) two hidden layers with 20 units each, and (iii) a single hidden
layer with 40 units.
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Figure 5.4: F1 score distributions across test readings for each of the three
readers with most sessions for three tasks.

learning from reader’s own data Complementing the setup
above, we now investigate how data from the same reader, but from
different reading sessions, can inform our models. Therefore, we fur-
ther perform cross-validation experiments across each reader’s ses-
sions. More concretely, for a reader with n marked readings, we per-
form n-fold cross validation, holding out one reading a time as a test
set and another to monitor validation loss for early stopping of the
neural model, while training on the remaining n− 2 readings.

mtl As outlined in Section 5.4.1, we now view readers as tasks in
an MTL model. For each of the three readers identified above and for
each test reading, we train an ensemble whose neural MTL models
define two outputs: one for the reader in question and one combined
output for all other readers in the entire dataset. The random forest
classifiers are trained on all remaining data except the held-out vali-
dation and test readings.

5.6 results and discussion

From Experiment 1, we observe that gaze features of the target word
itself contribute strongly to model improvements over the baseline of
textual features (see Table 5.3). Contextual gaze features and linguis-
tic features do so to a lesser degree. The best feature group combi-
nation consists of the basic features and both gaze feature groups.
Adding the linguistic features to this seems to slightly dilute the
model.
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The results from Experiment 2 in Figure 5.4 show that, at least for
these three readers, there is a considerable degree of specificity at-
tested in the reading patterns of misread words: in the scenario where
we learn only from other users’ gaze patterns (shown in light blue),
performance is generally worse than for the other approaches. The
high degree of reader specificity is also reflected in the comparison
between learning just across a single user’s readings and a multi-task
setup that also considers other readers. Here, we observe that the for-
mer attains higher mean F1 scores across readings for readers 10 and
16, although MTL is superior to the single-task setup for reader 15.
Another observation is that misreadings can generally be predicted
much better for reader 16 than for the other readers, which may in
part be due to the higher ratio of misread words in these readings.

As especially our cross-reader experiments show, there is reason to
believe that the manifestations of misreadings in gaze differ strongly
between these readers. However, since we do not have information on
the individual readers’ age or general reading proficiency, we cannot
confidently conclude whether the better stability of within-user exper-
iments attested in Figure 5.4 is due to reader-specific idiosyncrasies
or group-internal patterns (which would be supported by evidence
that readers 10 and 16 were more atypical readers than others in the
present dataset). We find some support for the latter hypothesis in lit-
erature describing children’s reading development, which identifies
a range of patterns common to young and low-proficiency readers.
These patterns include longer and more frequent fixations, shorter
saccadic amplitude and more regressions – all of which are also asso-
ciated with comprehension difficulties, see Blythe and Joseph (2011)
for a review. The presence of group-internal patterns is further sup-
ported by the observation that we are still able to successfully transfer
knowledge about readings patterns between users in some cases, in-
creasing performance for the readings of user 15.

One disadvantage of noisy, real-world data is that we do not know
to what degree similarities and differences in the data, as well as our
results, are influenced by chance, or whether they will generalize to
other gaze data. The fact that many parameters are outside of our con-
trol and also outside of our knowledge means that we cannot describe
certain biases in the data (such as age or reading skill) and consider
them as causes for statistical variations in model performance.

5.7 conclusion

This paper presented first work in the automatic prediction of reading
errors in children with dyslexia and other reading difficulties using
real-world gaze data. We showed that despite the noisy conditions un-
der which this data was obtained, features we extract from the gaze
patterns are predictive of reading mistakes among children. Besides
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the immediate application in automating some parts of reading teach-
ing, this could be exploited in personalized text simplification, where
gaze could be used as feedback to the system.

Our experiments further show that while gaze patterns for mis-
readings seem to be largely specific to individual readers or groups
of readers, we can successfully use MTL to transfer knowledge be-
tween readers at least in some cases. Note also that we have very
little knowledge of the age and general proficiency of specific read-
ers, including those investigated in our MTL experiments, and we
expect that our MTL approach can be much more successful between
more similar readers.
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L E X I : A T O O L F O R A D A P T I V E , P E R S O N A L I Z E D
T E X T S I M P L I F I C AT I O N

abstract

Most previous research in text simplification has aimed to develop
generic solutions, assuming very homogeneous target audiences with
consistent intra-group simplification needs. We argue that this as-
sumption does not hold, and that instead we need to develop simplifi-
cation systems that adapt to the individual needs of specific users. As
a first step towards personalized simplification, we propose a frame-
work for adaptive lexical simplification and introduce Lexi, a free
open-source and easily extensible tool for adaptive, personalized text
simplification. Lexi is easily installed as a browser extension, enabling
easy access to the service for its users.

6.1 introduction

Many a research paper on text simplification starts out by sketch-
ing the problem of text simplification as rewriting a text such that
it becomes easier to read, changing or removing as little of its infor-
mational content as possible (Zhu et al., 2010; Coster and Kauchak,
2011c; De Belder and Moens, 2010; Paetzold and Specia, 2015; Bin-
gel and Søgaard, 2016). Such a statement may describe the essence
of simplification as a research task, but it hides the fact that it is not
always easy to decide what is easy for a particular user. This paper
discusses why we need custom-tailored simplifications for individ-
ual users, and argues that previous research on non-adaptive text
simplification has been too generic to unfold the full potential of text
simplification.

Even when limiting ourselves to lexical substitution, i.e. the task of
reducing the complexity of a document by replacing difficult words
with easier-to-read synonyms, we see plenty of evidence that, for in-
stance, dyslexics are highly individual in what material is deemed
easy and complex (Ziegler et al., 2008). Lexi, which we introduce in
this paper, is a free, open-source and easily extensible tool for adap-
tively learning what items specific users find difficult, using this infor-
mation to provide better (lexical) simplification. Our system initially
serves Danish, but is easily extended to further languages. For sur-
veys of text simplification, including resources across languages, see
Siddharthan (2014), Shardlow (2014a) and Collins-Thompson (2014).



76 lexi : a tool for adaptive , personalized text simplification

6.1.1 There is no one-size-fits-all solution to text simplification

Text simplification is a diverse task, or perhaps rather a family of
tasks, with a number of different target audiences that different pa-
pers and research projects have focused on. Among the most promi-
nent target audiences are foreign language learners, for whom vari-
ous approaches to simplifying text have been pursued, often focusing
on lexical (Tweissi, 1998) but also sentence-level simplification (Liu
and Matsumoto, 2016). Other notable groups that have been specifi-
cally targeted in text simplification research include dyslexics (Rello
et al., 2013b), and the aphasic (Carroll et al., 1998), for whom particu-
larly long words and sentences, but also certain surface forms such as
specific character combinations, may pose difficulties. People on the
autism spectrum have also been addressed, with the focus lying on
reducing the amount of figurative expressions in a text or reducing
syntactic complexity (Evans et al., 2014). Reading beginners (both chil-
dren and adults) are another group with very particular needs, and
text simplification research has tried to provide this group with meth-
ods to reduce the amount of high-register language and non-frequent
words (De Belder and Moens, 2010).

Evidently, each target group has its own simplification needs, and
there is considerable variation as to how well the specifics of what
makes a text difficult is defined for each group and simplification
strategy. While difficult items in a text may be identified more eas-
ily and generally for problems such as resolving pronoun reference,
questions such as what makes a French word difficult for a native
speaker of Japanese, or what dyslexic children consider a difficult
character combination or an overly long sentence, are much harder
to answer. Nevertheless, there is a vast body of work (Yatskar et al.,
2010; Biran et al., 2011; Horn et al., 2014) that ventures to build very
general-purpose simplification models from simplification corpora
such as the Simple English Wikipedia corpus (Coster and Kauchak,
2011c), which has been edited by amateurs without explicit regard
to a specific audience, and with rather vague guidelines as to what
constitutes difficult or simple language.

Other work in simplification attempts to answer the above ques-
tions by inducing models from specifically compiled datasets, which
for instance may have been collected by surveying specific target
groups and asking them to indicate difficult material in a text. Yet
even those approaches often cannot live up to the real challenges
in simplification, seeing that we find very heterogeneous simplifica-
tion needs also within target groups. Foreign language learners with
different linguistic backgrounds (pertaining both to their native and
second languages) will find very different aspects of the same for-
eign language difficult. Young readers in different school grades will
quickly advance their reading habits and skills, and also within the
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same class or age reading levels may differ greatly. Likewise, people
with autism exhibit very different manifestations of the type and de-
gree of their condition (Alexander et al., 2016), also with respect to
reading (Evans et al., 2014), just as there exist many different forms
of cognitive impairments affecting literacy, including many different
forms of dyslexia (Watson and Goldgar, 1988; Bakker, 1992; Ziegler
et al., 2008). In fact, while there is a relatively strong agreement on
the existence of some typologies of dyslexia or autism, specific typolo-
gies that have been proposed are heavily debated, such that it would
not even be straightforward to create simplification tools for specific
subtypes of these conditions.

From this it becomes apparent that in order to build simplification
systems that truly help specific individuals, those systems have to be
personalized or personalizable. Further, due to the frequent lack of
insight into what an individual’s specific reading problems are (and
because any introspection is difficult to verify), such systems need to
be able to learn themselves what those individual challenges are, and
ultimately adapt to those.

6.1.2 Obtaining individual data

In order to learn specific reading challenges for an individual per-
son, a simplification system needs individual data for this person,
from which a personalized model can then be induced. This brings
up the question of how best to obtain such data. A straightforward
approach would be to ask each individual to provide ratings for some
number of stimuli as they start using a simplification system. How-
ever, this would pose a relatively unnatural reading scenario, which
might introduce a certain bias in the data and thus distort the in-
duced model. Further, it might create a dissatisfying user experience,
and users might not be willing to invest much time into such a cali-
bration phase, especially when they perceive reading as a particularly
strenuous activity. Yet perhaps most importantly, the model will not
necessarily be well-adapted to the specific domains and genres that a
specific user typically consumes text from.

As an alternative, we propose to collect data as the system is used,
and to continuously update the system with feedback it collects from
the user. In this way, the system can base its model on exactly those
text types the user consumes. We discuss how feedback can be incor-
porated into a system in Section 6.3 and provide details on how this
is implemented in our proposed system in Section 6.4.

6.1.3 Contributions

We present Lexi, an open source and easily extensible tool for adap-
tive, personalized text simplification. Lexi is based on an adaptive
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framework for lexical simplification that we also describe in this pa-
per. This framework incorporates feedback from users, updating per-
sonalized simplification models such as to meet their individual sim-
plification needs. Lexi is made publicly available under a CC-BY-NC
license24 at https://www.readwithlexi.net.

6.2 related work

Perhaps the earliest contribution that focuses on on-demand lexical
simplification is the work of Devlin and Unthank (2006), who present
HAPPI, a web platform that allows users to request simplified ver-
sions of words, as well as other “memory jogging” pieces of informa-
tion, such as related images.

Another example is the work of Azab et al. (2015), who present a
web platform that allows users to select words they do not compre-
hend, then presents them with synonyms in order to facilitate com-
prehension. Notice that their approach does not simplify the selected
complex words directly, it simply shows semantically equivalent al-
ternatives that could be within the vocabulary known by the user.

The recent work of Paetzold and Specia (2016a) describes Anita,
yet another web platform of this kind. It allows users to select com-
plex words and then request a simplified version, related images,
synonyms, definitions and translations. Paetzold and Specia (2016a)
claim that their approach outputs customized simplifications depend-
ing on the user’s profile, and evolves as users provide feedback on the
output produced. However, they provide no details of the approach
they use to do so, nor do they present any results showcasing its
effectiveness.

Therefore not counting Paetzold and Specia (2016a) as work in per-
sonalized simplification, we are not aware of any previous approaches
that address this. We further refer to related work on specific aspects
of text simplification as they become relevant in the course of this
paper.

6.3 adaptive text simplification

As we mapped out in the introduction, we devise a simplification
system that continuously learns from user feedback and adapts to
the user’s simplification needs. This section discusses how such feed-
back can be incorporated into a lexical simplification model via online
learning, and where in the lexical simplification pipeline it is sensible
to implement adaptivity.

24 https://creativecommons.org/licenses/by-nc/4.0/

https://www.readwithlexi.net
https://creativecommons.org/licenses/by-nc/4.0/
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6.3.1 Adaptivity in the lexical simplification pipeline

Lexical simplification, i.e. replacing single words with simpler syn-
onyms, classically employs a pipeline approach illustrated in Figure
6.1 (Shardlow, 2014b; Paetzold and Specia, 2015). This pipeline con-
sists of a four-step process, the first step of which is to identify sim-
plification targets, i.e. words that the model believes will pose a diffi-
culty for the user. This step is called Complex Word Identification (CWI)
and has received a great deal of attention in the community, including
two shared tasks (Paetzold and Specia, 2016b; Yimam et al., 2018). In a
second step, known as Substitution Generation, synonyms are retrieved
as candidate replacements for the target These are then filtered to
match the context, resolving word sense ambiguities or stylistic mis-
matches, in Substitution Selection. Finally, those filtered candidate are
ranked in order of simplicity in what is known as Substitution Ranking
(SR).

Out of these four steps, we consider CWI and SR as the most nat-
ural ones to make adaptive, whereas generation and selecting can-
didates can be regarded as relatively independent from a specific
user. In order to implement adaptivity, we propose to make use of
online learning methods as discussed below and, departing from a
seed model, train and maintain user-specific models as we collect feed-
back.

6.3.1.1 Adaptive CWI

Complex Word Identification is usually approached as a binary clas-
sification task, where the goal is to decide for some word in context
whether or not it poses a difficulty to a reader. Existing datasets, for
instance the ones used at previous CWI shared tasks (Paetzold and
Specia, 2016b; Yimam et al., 2018), therefore provide a sentence and a
target word (or multi-word expression) together with a binary label.

A model trained on this data with a learning algorithm based on
gradient descent on t examples can now easily integrate newly col-
lected data points into its parameters θ using an update rule such
as

θ(t+1) = θ(t) − η∇θ(t)J(θ
(t); x,y), (6.1)

where x is a representation of a target word in context and y is a
binary complexity label we receive from user feedback. As an alter-
native to gradient descent based algorithms, we can use other online
learning models, e.g. the Perceptron algorithm. CWI datasets are typ-
ically not very large (between 2,500 and 5,500 positive examples per
dataset in the mentioned shared tasks), such that data points sampled
from users can quickly have an impact on a generic base model.25

25 An alternative to traditional, one-size-fits-all approaches has recently been proposed
by Bingel et al. (2018b), who use eye-tracking measures to induce personalized mod-
els to predict misreadings in children with reading difficulties.
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6.3.1.2 Adaptive Substitution Ranking

Substitution Ranking has received relatively little attention in the
community compared to CWI. Most lexical simplifiers rank candi-
dates using unsupervised approaches. The earliest example is the ap-
proach of Carroll et al. (1998), who rank candidates according to their
Kucera-Francis coefficients, which are calculated based on frequen-
cies extracted from the Brown corpus (Rudell, 1993). Other unsuper-
vised approaches, such as those of Ligozat et al. (2012) and Glavaš
and Štajner (2015), go a step further and use metrics that incorpo-
rate multiple aspects of word complexity, including context-aware
features such as n-gram frequencies and language model probabili-
ties. But even though unsupervised rankers perform well in the task,
they are incapable of learning from data, which makes them unsuit-
able for adaptive SR.

Our approach to adaptive SR is similar to our approach to adap-
tive CWI, namely to train an initial model over manually produced
simplicity rankings, then continuously update them with new knowl-
edge as Lexi users provide feedback on the simplifications they re-
ceive. The feedback in this scenario is composed of a complex word
in context, a simplification produced by Lexi, and a binary rank pro-
vided by the user determining which word (complex or simplifica-
tion) makes the sentence easier to understand. For that purpose, we
need a supervised model that (i) supports online learning so that it
can be efficiently updated after each session, and (ii) can learn from
binary ranks.

Paetzold and Specia (2017b) offer some intuition on how this can
be done. They exploit the fact that one can decompose a sequence
of elements {e1, e2, ..., en} with ranks {r1, r2, ..., rn} into a matrix m ∈
Rn×n, such that m(i, j) = f

(
ri, rj

)
, and function f

(
ri, rj

)
estimates a

value that describes the relationship between the ranks of elements
ei and ej. For example, f could be described as:

f
(
ri, rj

)
=


1 if ri < rj
−1 if ri > rj
0 otherwise

(6.2)

The ranker of Paetzold and Specia (2017b) uses a deep multi-layer
perceptron that predicts each value of m individually. It takes as in-
put feature representations of ei and ej, and produces a function f
similar to the one depicted in Equation 6.2. Their approach would
be perfectly capable of learning from the feedback produced by Lexi
users, but it would be very difficult to train it through online learning,
given that deep multi-layer perceptrons are characterized by a large
number of parameters that are costly to optimize in an on-demand
basis. We instead propose to employ an online learning model that
has fewer parameters, e.g. logistic regression.
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Figure 6.1: Lexical simplification pipeline as identified by Shardlow (2014b).
The simplification workflow consists of identifying simplification
targets, i.e. words that pose a challenge to the reader. In the gen-
eration step, possible alternatives for each target are retrieved,
which are then filtered in the selection step, eliminating words
that do not fit the context. In the ranking step, the system finally
orders the candidates by simplicity. Picture taken from Paetzold
and Specia (2015).

6.4 implementation

Lexi consists of a client-side frontend and a server-side backend that
communicate with each other via a RESTful API (Fielding, 2000), ex-
changing requests and responses as described further in 6.4.3. The
client-server architecture allows for easy portability of the software to
users, minimizing user-side installation efforts, hardware usage and
dependencies on other libraries. It also centralizes the simplification
engine, such that amendments to and maintenance of the latter need
only be implemented on the server side.

Lexi is currently limited to performing lexical simplification. Note,
however, that this is merely a limitation of the backend system, which
only implements a lexical simplification system for now. From the
frontend perspective, however, there are no limitations as to the na-
ture and length of the simplified items in a text, and extending Lexi
to support higher-level modes of simplification simply amounts to
implementing a backend system supporting this.26

We initially focus on lexical simplification for a number of reasons:
(i) We have existing baseline models that we expect to work well in a
real-world setting. (ii) Given a relatively small number of parameters
in those models, we expect fast adaptation to individual users from
relatively little feedback. (iii) Compared to other forms of simplifica-
tion, lexical simplification needs to make a selection from a relatively
limited search space that is still reasonably diverse, such that we ex-
pect personalized models to make a difference more easily.

26 Note that, in general, this paper describes the Lexi frontend and backend versions
1.0. Both parts of Lexi are under ongoing development, with details pertaining to
the implementation possibly subject to change.
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Figure 6.2: User registration form Figure 6.3: Five-point rating form

Figure 6.4: Simplification spans are marked up in light green. As the user
clicks on a simplification span, the currently displayed word is
replaced with an alternative.

6.4.1 Frontend

Lexi’s frontend is implemented in JavaScript and jQuery under the
Mozilla WebExtension framework, supported by most modern brow-
sers.27 WebExtensions employ content scripts to modify a webpage
upon certain specified events, for instance a click on some page ele-
ment. The remainder of this section describes Lexi’s basic usage as
the user registers an account and asks the system for simplifications,
thereby illustrating the user interface and sketching the inner work-
ings of the frontend.

6.4.1.1 User log-in and registration

Upon installation of the Lexi extension in the browser, the user is
prompted to register an account, providing an email address as well
as basic demographic information (year of birth and educational level,
see Figure 6.2). This information is sent to the backend using its reg-
istration endpoint (see Table 6.1). If the user has previously created
an account and simply reinstalled the extension, they may also just
provide their email address to keep using their existing profile. The
user’s email address is stored locally in the browser, where it is kept
until the browser storage is cleared or the extension is uninstalled.

27 https://developer.mozilla.org/en-US/Add-ons/WebExtensions

https://developer.mozilla.org/en-US/Add-ons/WebExtensions
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6.4.1.2 Simplification requests and display

Whenever the user visits a webpage, the extension injects an event
listener into the page, which triggers upon the selection of some text
and offers the user to simplify the selected content in the form of a
small button that is displayed just above the selection. When this but-
ton is clicked, the extension retrieves the user’s email address from
the browser storage (prompting the user to log in if no email address
is stored) and verifies that a user with that email address exists in the
backend’s database, using the login endpoint as given in Table 6.1.
The script then submits a simplification request to the backend’s sim-
plification endpoint, enclosing a JSON object that contains the user’s
email address (used by the backend to retrieve the personal simplifi-
cation model) and the HTML code of the element containing the text
selection. See Appendix A.1.1 for an example.

The response from the backend then transmits a JSON object with
augmented HTML, where <span> elements with unique IDs are
wrapped around simplification targets. The response object further
contains an array of simplification objects, each of which in turn con-
tains a list of synonyms ordered by simplicity ranking (including the
target). An example is given in Appendix A.1.2. The content script
replaces the original source with the augmented HTML and displays
each simplification span with a light green background color (see Fig-
ure 6.4). The script then shifts through the simplification alternatives
for a given target whenever the user clicks on the respective span on
the page, advancing one alternative per click and reverting to the first
alternative at the end of list. The original item is marked in a slightly
but discernibly darker shade than the proposed simplifications.

6.4.1.3 User feedback

In order to provide personalized simplifications and to adapt to in-
dividual users, Lexi needs to be able to decide which alternative a
user prefers over the others for every target. In a classical, controlled
annotation setting, one would probably present subjects with a set
of alternatives and have them rank these or pick a single favorite.
However, as Lexi aims to provide as natural and smooth a reading
scenario as possible to its users, explicitly asking for such feedback
would critically obstruct the reading process.

Lexi therefore interprets whatever final selection a user makes for
some simplification span as their preferred alternative in this con-
text.28 As the user finally navigates away from the webpage that Lexi
was invoked on, Lexi solicits feedback from the user on a five-point

28 In the instructions, users are made aware of this. The frontend further keeps track
of how many times the user clicked on a given simplification span, thus providing
the backend with information such as how many times the user clicked through the
entire list, or whether perhaps no alternatives were solicited for some item.
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scale (see Figure 6.3) and submits this rating along with the simplifi-
cation objects and their final selections (and click-through counts) to
the feedback endpoint of the backend.29 See Appendix A.1.3 for an
example of the feedback.

6.4.1.4 Qualitative evaluation of usability

The frontend design was developed in close collaboration with Nota,
the Danish Library and Expertise Center for people with reading dis-
abilities.30 In February 2018, the software was intensively tested by
four dyslexic members of Nota, all female students in secondary ed-
ucation and aged between 20 and 30. Each test started with a short
preliminary interview in which the subjects were asked about their
age, occupation/study field, reading habits, degree of dyslexia and
use of browser extensions. The subjects were then given the possi-
bility to watch an introduction video (of 1:30 min length) outlining
Lexi’s basic functionality and user interface. Two of the four subjects
opted for this, while the other two decided to skip the video as they
do not usually watch introduction videos when using new software.
Next, the subjects were asked to locate Lexi in the Chrome Webshop,
install it in the browser and create a user account. Once set up, each
subject navigated to a site of her choice and used Lexi to receive
simplifications as outlined in 6.4.1.2. The two subjects who had not
watched the video did so now, and both declared they gained further
insight into Lexi’s functionality through the video, but that it was not
crucial in order to understand its basic usage.

In qualitative interviews directly succeeding each test, the test sub-
jects overall reacted very positively to the prospect of a personalized
simplification tool in general, and to Lexi and its design in particu-
lar.31 The test subjects suggested a number of improvements, most
of which have now been implemented. One suggested improvement,
which we have not been able to implement but intend to do so for a
future version, is the support for multilingual simplification. Two sub-
jects said they would greatly appreciate this, as much of their study
material is only available in English.

29 More correctly, feedback is not solicited when the user actual navigates away from
the page, as security restrictions in browsers disallow custom scripts to run upon
closing a page. Instead, Lexi asks for feedback via a small notification box in the up-
per right corner of the page, which pops up as the operating system’s focus changes
to a different window, or when the mouse leaves the browser’s viewport (e.g. for the
address bar).

30 http://www.nota.dk

31 An informal evaluation of the software on a 5-point scale (with 1 being worst and 5

best) yielded two ratings of 5, one 4 and one 3.

http://www.nota.dk
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6.4.2 Backend

Lexi’s backend consists of a simplification system, implemented in
Python 3.5, and a database that stores user information and their
simplification histories.

6.4.2.1 Simplification system

As stated above, Lexi’s simplification system currently focuses on lex-
ical simplification, abiding to the de-facto standard pipeline depicted
in Figure 6.1. Since Lexi lets users choose which words they wish
to have simplified, it does not employ any automatic CWI.32 Below
we sketch Lexi’s simplification system as it receives simplification re-
quests from the frontend. As our lexical simplification approach is
sensitive to the context of a word, Lexi’s first step is to preprocess the
HTML source transmitted from the frontend, identifying the bound-
aries of the sentence that contains the target word, if any.33

For Substitution Generation, Lexi’s backend implements the em-
beddings-based approach inspired by the contributions of Glavaš and
Štajner (2015) and Paetzold and Specia (2016d). In their work, they
extract as candidate substitutions the N words with the highest co-
sine similarity with a target word. As Danish, the language currently
served by Lexi, is not as well-resourced as for example English, Lexi
extends the embedding-based Substitution Generation approach by
using an ensemble of embeddings models that are trained indepen-
dently on different text sources, the Danish Wikipedia and a news cor-
pus.34 The overall similarity score for a target-candidate pair is then
defined as the mean score across these embeddings models. Lexi re-
turns the ten most similar candidates whose mean similarity score ex-
ceeds some configurable threshold. Alternatively, Lexi allows to gen-
erate synonyms from a simple dictionary, in the case of Danish using
the Danish WordNet (Pedersen et al., 2009), yet this approach suffers
from severely reduced coverage compared to word embeddings.

Once generated, the candidates are filtered during Substitution Se-
lection by an unsupervised boundary ranker (Paetzold and Specia,
2016d). In this approach, a supervised ranker is trained with instances
gathered in an unsupervised fashion: we generate candidate substitu-
tions for complex words using our generation approach, then assign
label 1 to the complex words and 0 to the generated candidates. The
boundary between the two classes is then used to rank and filter

32 We do plan, however, to implement CWI as the user solicits simplifications for longer
text passages or entire pages.

33 In order to reduce bandwidth and modify the page more easily, the frontend only
transmits the HTML source of the least HTML node fully containing the selection,
which typically is a paragraph (<p>), but may also be a single word contained in a
heading (e.g. <h1>), in which case no context is available. Sentence boundaries are
identified using NLTK.

34 https://ordnet.dk/korpusdk

https://ordnet.dk/korpusdk
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candidates. Paetzold and Specia (2016d) show that this is a state-of-
the-art approach that outperforms all earlier supervised and unsuper-
vised strategies. Given a target word and a set of generated candidate
substitutions, the model ranks the candidates based on how far in the
positive side of the data they are, then selects 65% of the highest rank-
ing ones.

Finally, the selected candidates are ranked with a supervised Sub-
stitution Ranking model following the approach we outlined in Sec-
tion 6.3.1.2. It is during this step that Lexi is capable of producing
customized output based on the user’s needs, and to evolve based on
the user’s feedback. Lexi employs a pairwise online logistic regres-
sion model that learns to quantify the simplicity difference between
two candidate substitutions. Given an unseen set of candidate sub-
stitutions, the regressor estimates the simplicity difference between
each candidate pair, then ranks all candidates based on their average
score.

Note that the user’s feedback, sent by the frontend, consists of a
set S and an index i, where S is the full set of suggested synonyms,
including the target, and i is the index of the item in S that the user
finally selected. As the regressor, however, learns from pairwise rank-
ings, Lexi passes all pairs {〈Si,Sj〉|j 6= i} to the regressor, i.e. it pairs
the selected item with all others and updates the ranker accordingly,
postulating that the selected item is easier for this user than each
other suggestion.

Using a seed dataset of complex-simple word correspondences in
context, we train a default model that produces initial simplifications
as a user solicits simplifications for the first time.35 As Lexi receives
feedback for this user for the first time, the seed model is copied and
personalized with the first batch of feedback, then this model is saved
for later requests by this user.

6.4.2.2 Database

Lexi stores user information and simplification histories in a Post-
greSQL database. More specifically, it employs three different tables,
called users, models and sessions. In the first of these, it links a
unique, numerical user ID to a user email address, and stores when
the user first and last used Lexi. It further contains the demographic
information the user provides at registration, i.e. their year of birth
and educational status. The models table stores a path to the seri-
alized personal model for each user ID. Finally, the sessions table
stores each simplification request issued to the backend with a unique

35 Such a seed dataset is not necessarily available for any language. However, in its
absence, a seed model could either be trained with simple heuristics, e.g. replacing
infrequent words with higher-frequency synonyms. Alternatively, the system could
choose to initially rank candidates with such a heuristic and only start learning once
the first feedback is available.
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URI path Input Returns

/simplify User ID; page HTML Augmented HTML, simpli-
fication objects

/login User email address If successful: User ID, else
error code

/register User information If successful: User ID, else
error code

/feedback User ID; simplification ob-
jects updated with selec-
tions; rating

Status code (successful up-
date or error)

Table 6.1: RESTful API endpoints defined by Lexi’s backend.

session ID, the respective user ID, a time stamp for the session start
and one for the submission of feedback, the webpage URL, simplifi-
cation objects serialized as JSON, the provided rating and finally the
frontend version number used in this session.

6.4.3 Communication between backend and frontend

Lexi’s backend offers a RESTful API implemented in Python 3.5, us-
ing the Flask package.36 The services available through HTTP POST
requests, with their URI paths listed in Table 6.1. Input and output
values are communicated via a JSON-based protocol exemplified in
the appendix. Lexi further defines a set of error codes for easier trou-
bleshooting and flexible internationalization of the frontend via the
i18n API used by WebExtensions.

6.4.4 Language support and extensibility

Lexi’s design does not impose any restrictions on the support of new
(written) languages, including right-to-left or non-alphabetic writing
systems. In fact, supporting a new language simply amounts to pro-
viding a new language-specific simplification pipeline as illustrated
in Figure 6.1.

Depending on the specific implementation of the simplification
system, certain resources are however needed to induce a first seed
model for simplification. Most centrally, this pertains to Substitution
Generation, where a synonym database or good word embeddings
are required in the case of lexical simplification, or a reliable para-
phrase module in the case of higher-level simplification. With respect
to Substitution Ranking, the availability of resources such as simpli-

36 http://flask.pocoo.org/

http://flask.pocoo.org/
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fication corpora is less critical, as simple heuristics (e.g. simplicity
proxies such as length and frequency) might give a reasonable base-
line upon which the system can then improve through user feedback.

Lexi currently does not offer multilingual support, but is confined
to one language per backend instance. Supporting multilingual sim-
plification could be implemented through a language identification
module upstream to the set of simplification pipelines, consisting
of one pipeline per language. This raises the interesting question
whether knowledge about one user’s simplification preferences in
one language could be transferred to another language. Support for
this hypothesis comes, among others, from the cross-lingual track in
the recent CWI shared task by Yimam et al. (2018).

6.4.5 Ethical and legal considerations

As any software interacting with users and storing information on
them, Lexi is naturally subject to ethical and legal concerns, especially
those regarding privacy. The EU General Data Protection Regulation
(GDPR), for instance, defines a number of regulations such as the
clear statement of terms and conditions or that users need to be pro-
vided, upon request, with full access to whatever data is stored on
them. Lexi does not explicitly store users’ names, but in many cases
they will be encoded in email addresses. Personally identifiable infor-
mation may also be stored in the form of simplified text that is logged
in the database, for instance if Lexi is used on a user’s personal social
media profile. The above also highlights the need for encrypted com-
munication between the client and the server, which is safeguarded
through TLS encryption over the HTTPS protocol.

Ethical concerns pertaining to text simplification arise when infe-
licitous simplifications distort the meaning of a text and thus poten-
tially misinform the reader. This is difficult to completely rule out,
such that the user should clearly be informed of this possibility. Other
concerns revolve around the hypothesis that reducing text complex-
ity will “dumb down” the material and keep users at a low reading
level by under-challenging them (Long and Ross, 1993). However, as
Rello et al. (2013b) point out, “anything which might help [dyslexics]
to subjectively perceive reading as being easier, can potentially help
them to avoid this vicious circle [of reading less and staying on a low
reading level], even if no significant improvement in readability can
be demonstrated.”

6.5 availability and applications

The Lexi software and code, including its backend and frontend, are
freely available for non-commercial use under a CC-BY-NC license,
obtainable at https://www.readwithlexi.net. Researchers can set up

https://www.readwithlexi.net
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their own, customized version of the software and distribute the brow-
ser extension to users. It is straightforward to modify features of the
software such as offered languages or the exact resources used to
induce the initial models.

Besides its core functionality, which we mapped out in the previous
sections, Lexi has a number of alternate use cases, which we discuss
in this section.

preloaded simplifications Lexi’s primary use case, as des-
cribed earlier, is to provide simplifications to users as they select a
span of text, which circumvents the need for a CWI module as only
such items are simplified that the user explicitly solicits replacements
for. Alternatively, users may wish to have the entire page simplified
before they start reading. Lexi currently implements this functionality,
letting the user solicit simplifications for the entire site via a click on
the Lexi icon. As there is no personalized CWI module implemented
yet, simplification targets are identified via a confidence threshold
during Substitution Generation.

evaluation of simplification quality Via its rating func-
tion (Figure 6.3), Lexi continuously tracks user satisfaction as a means
of evaluating synchronic simplification quality as well as the dia-
chronic development of model adaptation. An adaptive model that
is continuously customized is expected to gradually improve the av-
erage rating it receives from the user.

data collection Lexi makes it possible to collect user choices
over a longer period in order to create bigger simplification datasets.
If sufficiently homogeneous subgroups can be identified across users,
this data may give insight into their simplification needs, to build
better simplification models for them.

Other plausible approaches may understand different users as dif-
ferent tasks and apply multi-task learning methods to transfer knowl-
edge between users, thus both regularizing the models for the in-
dividual user and increasing the available amount of data that the
individual models can be learned from.

6.6 conclusion and future work

This paper is a first work in personalized, adaptive text simplifica-
tion, a direction of research motivated by the observation that generic,
user-independent simplification systems cannot fully unfold their po-
tential in making text simpler for specific end users. We propose
a framework for adaptive lexical simplification, outlining how user
feedback can be used to gradually enhance and personalize text sim-
plification. As a concrete first solution to the problem, we present
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Lexi, an open-source tool for personalized, adaptive text simplifica-
tion that has been very positively evaluated in a first usability test. In
its current implementation, Lexi focuses on lexical simplification in
Danish. An extension to other languages is simple, requiring only a
medium-sized monolingual corpus on which a language model and
word embeddings can be trained.

In future work, we aim to extend the proposed framework to sen-
tence-level simplifications. We further plan to implement support for
multilingual simplification.
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abstract

Multi-task learning (MTL) in deep neural networks for NLP has re-
cently received increasing interest due to some compelling benefits,
including its potential to efficiently regularize models and to reduce
the need for labeled data. While it has brought significant improve-
ments in a number of NLP tasks, mixed results have been reported,
and little is known about the conditions under which MTL leads to
gains in NLP. This paper sheds light on the specific task relations that
can lead to gains from MTL models over single-task setups.

7.1 introduction

Multi-task learning is receiving increasing interest in both academia
and industry, with the potential to reduce the need for labeled data,
and to enable the induction of more robust models. The main driver
has been empirical results pushing state of the art in various tasks,
but preliminary theoretical findings guarantee that multi-task learn-
ing works under various conditions. Some approaches to multi-task
learning are, for example, known to work when the tasks share opti-
mal hypothesis classes (Baxter, 2000) or are drawn from related sam-
ple generating distributions (Ben-David and Borbely, 2008).

In NLP, multi-task learning typically involves very heterogeneous
tasks. However, while great improvements have been reported (Lu-
ong et al., 2016; Klerke et al., 2016), results are also often mixed
(Collobert and Weston, 2008; Søgaard and Goldberg, 2016; Martínez
Alonso and Plank, 2017), and theoretical guarantees no longer apply.
The question what task relations guarantee gains or make gains likely in
NLP remains open.

contributions This paper presents a systematic study of when
and why MTL works in the context of sequence labeling with deep
recurrent neural networks. We follow previous work (Klerke et al.,
2016; Søgaard and Goldberg, 2016; Bollman and Søgaard, 2016; Plank,
2016; Braud et al., 2016; Martínez Alonso and Plank, 2017) in study-
ing the set-up where hyperparameters from the single task architec-
tures are reused in the multi-task set-up (no additional tuning), which
makes predicting gains feasible. Running MTL experiments on 90
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task configurations and comparing their performance to single-task
setups, we identify data characteristics and patterns in single-task
learning that predict task synergies in deep neural networks. Both
the LSTM code used for our single-task and multi-task models, as
well as the script we used for the analysis of these, are available at
github.com/jbingel/eacl2017_mtl.

7.2 related work

In the context of structured prediction in NLP, there has been very
little work on the conditions under which MTL works. Luong et al.
(2016) suggest that it is important that the auxiliary data does not out-
size the target data, while Benton et al. (2017) suggest that multi-task
learning is particularly effective when we only have access to small
amounts of target data. Martínez Alonso and Plank (2017) present a
study on different task combinations with dedicated main and aux-
iliary tasks. Their findings suggest, among others, that success de-
pends on how uniformly the auxiliary task labels are distributed.

Mou et al. (2016) investigate multi-task learning and its relation to
transfer learning, and under which conditions these work between a
set of sentence classification tasks. Their main finding with respect to
multi-task learning is that success depends largely on “how similar
in semantics the source and target datasets are”, and that it generally
bears close resemblance to transfer learning in the effect it has on
model performance.

7.3 multi-task learning

While there are many approaches to multi-task learning, hard param-
eter sharing in deep neural networks (Caruana, 1993) has become
extremely popular in recent years. Its greatest advantages over other
methods include (i) that it is known to be an efficient regularizer, the-
oretically (Baxter, 2000), as well as in practice (Søgaard and Goldberg,
2016); and (ii) that it is easy to implement.

The basic idea in hard parameter sharing in deep neural networks
is that the different tasks share some of the hidden layers, such that
these learn a joint representation for multiple tasks. Another concep-
tualization is to think of this as regularizing our target model by do-
ing model interpolation with auxiliary models in a dynamic fashion.

Multi-task linear models have typically been presented as matrix
regularizers. The parameters of each task-specific model makes up a
row in a matrix, and multi-task learning is enforced by defining a joint
regularization term over this matrix. One such approach would be to
define the joint loss as the sum of losses and the sum of the singu-
lar values of the matrix. The most common approach is to regularize
learning by the sum of the distances of the task-specific models to the

github.com/jbingel/eacl2017_mtl
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Task Size # Labels Tok/typ %OOV H(y) ||X||F JSD F1

ccg 39,604 1,285 23.08 1.13 3.28 981.3 0.41 86.1

chu 8,936 22 12.01 1.35 1.84 466.4 0.47 93.9

com 9,600 2 9.47 0.99 0.47 519.3 0.44 51.9

fnt 3,711 2 8.44 1.79 0.51 286.8 0.30 58.0

pos 1,002 12 3.24 14.15 2.27 116.9 0.24 82.6

hyp 2,000 2 6.14 2.14 0.47 269.3 0.48 39.3

key 2,398 2 9.10 4.46 0.61 289.1 0.39 64.5

mwe 3,312 3 9.07 0.73 0.53 217.3 0.18 43.3

sem 15,465 73 11.16 4.72 2.19 614.6 0.35 70.8

str 3,312 118 9.07 0.73 2.43 217.3 0.26 61.5

Table 7.1: Dataset characteristics for the individual tasks as defined in Table
7.2, as well as single-task model performance on test data (micro-
averaged F1).

model mean. This is called mean-constrained learning. Hard param-
eter sharing can be seen as a very crude form of mean-constrained
learning, in which parts of all models (typically the hidden layers)
are enforced to be identical to the mean.

Since we are only forcing parts of the models to be identical, each
task-specific model is still left with wiggle room to model heteroge-
neous tasks, but the expressivity is very limited, as evidenced by the
inability of such networks to fit random noise (Søgaard and Goldberg,
2016).

7.3.1 Models

Recent work on multi-task learning of NLP models has focused on
sequence labeling with recurrent neural networks (Klerke et al., 2016;
Søgaard and Goldberg, 2016; Bollman and Søgaard, 2016; Plank, 2016;
Braud et al., 2016; Martínez Alonso and Plank, 2017), although se-
quence-to-sequence models have been shown to profit from MTL as
well (Luong et al., 2016). Our multi-task learning architecture is simi-
lar to the former, with a bi-directional LSTM as a single hidden layer
of 100 dimensions that is shared across all tasks. The inputs to this
hidden layer are 100-dimensional word vectors that are initialized
with pretrained GloVe embeddings, but updated during training. The
embedding parameters are also shared. The model then generates
predictions from the bi-LSTM through task-specific dense projections.
Our model is symmetric in the sense that it does not distinguish be-
tween main and auxiliary tasks.

In our MTL setup, a training step consists of uniformly drawing
a training task, then sampling a random batch of 32 examples from
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the task’s training data. Every training step thus works on exactly
one task, and optimizes the task-specific projection and the shared
parameters using Adadelta. As already mentioned, we keep hyper-
parameters fixed across single-task and multi-task settings, making
our results only applicable to the scenario where one wants to know
whether MTL works in the current parameter setting (Collobert and
Weston, 2008; Klerke et al., 2016; Søgaard and Goldberg, 2016; Boll-
man and Søgaard, 2016; Plank, 2016; Braud et al., 2016; Martínez
Alonso and Plank, 2017).

7.3.2 Tasks

In our experiments below, we consider the following ten NLP tasks,
with one dataset for each task. Characteristics of the datasets that we
use are summarized in Table 7.1.

1. CCG Tagging (ccg) is a sequence tagging problem that assigns
a logical type to every token. We use the standard splits for CCG
super-tagging from the CCGBank (Hockenmaier and Steedman,
2007).

2. Chunking (chu) identifies continuous spans of tokens that form
syntactic units such as noun phrases or verb phrases. We use the
standard splits for syntactic chunking from the English Penn
Treebank (Marcus et al., 1993).

3. Sentence Compression (com) We use the publicly available sub-
set of the Google Compression dataset (Filippova and Altun,
2013), which has token-level annotations of word deletions.

4. Semantic frames (fnt) We use FrameNet 1.5 for jointly predict-
ing target words that trigger frames, and deciding on the correct
frame in context.

5. POS tagging (pos) We use a dataset of tweets annotated for
Universal part-of-speech tags (Petrov et al., 2011).

6. Hyperlink Prediction (hyp) We use the hypertext corpus from
Spitkovsky et al. (2010) and predict what sequences of words
have been bracketed with hyperlinks.

7. Keyphrase Detection (key) This task amounts to detecting key-
phrases in scientific publications. We use the SemEval 2017 Task
10 dataset.

8. MWE Detection (mwe) We use the Streusle corpus (Schneider
and Smith, 2015) to learn to identify multi-word expressions (on
my own, cope with).
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Data features

Size Number of training sentences.

# Labels The number of labels.

Tokens/types Type/token ratio in training data.

OOV rate Percentage of training words not in GloVe vectors.

Label Entropy Entropy of the label distribution.

Frobenius norm ||X||F = [
∑
i,j X

2
i,j]
1/2, where Xi,j is the frequency of

term j in sentence i.

JSD Jensen-Shannon Divergence between train and test
bags-of-words.

Learning curve features

Curve gradients See text.

Fitted log-curve See text.

Table 7.2: Task features

9. Super-sense tagging (sem) We use the standard splits for the
Semcor dataset, predicting coarse-grained semantic types of nouns
and verbs (super-senses).

10. Super-sense Tagging (str) As for the MWE task, we use the
Streusle corpus, jointly predicting brackets and coarse-grained
semantic types of the multi-word expressions.

7.4 experiments

We train single-task bi-LSTMs for each of the ten tasks, as well as
one multi-task model for each of the pairs between the tasks, yield-
ing 90 directed pairs of the form 〈Tmain, {Tmain,Taux}〉. The single-
task models are trained for 25,000 batches, while multi-task models
are trained for 50,000 batches to account for the uniform drawing of
the two tasks at every iteration in the multi-task setup. The relative
gains and losses from MTL over the single-task models (see Table
7.1) are presented in Figure 7.1, showing improvements in 40 out
of 90 cases. We see that chunking and high-level semantic tagging
generally contribute most to other tasks, while hyperlinks do not sig-
nificantly improve any other task. On the receiving end, we see that
multiword and hyperlink detection seem to profit most from several
auxiliary tasks. Symbiotic relationships are formed, e.g., by POS and
CCG-tagging, or MWE and compression.

We now investigate whether we can predict gains from MTL given
features of the tasks and single-task learning characteristics. We will
use the induced meta-learning for analyzing what such characteris-
tics are predictive of gains.
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Figure 7.1: Relative gains and losses (in percent) over main task micro-
averaged F1 when incorporating auxiliary tasks (columns) com-
pared to single-task models for the main tasks (rows).

Specifically, for each task considered, we extract a number of dataset-
inherent features (see Table 7.2) as well as features that we derive
from the learning curve of the respective single-task model. For the
curve gradients, we compute the gradients of the loss curve at 10, 20,
30, 50 and 70 percent of the 25,000 batches. For the fitted log-curve pa-
rameters, we fit a logarithmic function to the loss curve values, where
the function is of the form: L(i) = a · ln(c · i+ d) + b. We include the
fitted parameters a and c as features that describe the steepness of
the learning curve. In total, both the main and the auxiliary task are
described by 14 features. Since we also compute the main/auxiliary
ratios of these values, each of our 90 data points is described by 42 fea-
tures that we normalize to the [0, 1] interval. We binarize the results
presented in Figure 7.1 and use logistic regression to predict benefits
or detriments of MTL setups based on the features computed above.37

7.4.1 Results

The mean performance of 100 runs of randomized five-fold cross-
validation of our logistic regression model for different feature com-
binations is listed in Table 7.3. The first observation is that there is
a strong signal in our meta-learning features. In almost four in five
cases, we can predict the outcome of the MTL experiment from the
data and the single task experiments, which gives validity to our

37 An experiment in which we tried to predict the magnitude of the losses and gains
with linear regression yielded inconclusive results.
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Acc. F1 (gain)

Majority baseline 0.555 0.615

All features 0.749 0.669

Best, data features only 0.665 0.542

Best combination 0.785 0.713

Table 7.3: Mean performance across 100 runs of 5-fold CV logistic regres-
sion.

feature analysis. We also see that the features derived from the sin-
gle task inductions are the most important. In fact, using only data-
inherent features, the F1 score of the positive class is worse than the
majority baseline.

7.4.2 Analysis

Table 7.4 lists the coefficients for all 42 features. We find that features
describing the learning curves for the main and auxiliary tasks are
the best predictors of MTL gains. The ratios of the learning curve
features seem less predictive, and the gradients around 20-30% seem
most important, after the area where the curve typically flattens a bit
(around 10%). Interestingly, however, these gradients correlate in op-
posite ways for the main and auxiliary tasks. The pattern is that if
the main tasks have flattening learning curves (small negative gra-
dients) in the 20-30% percentile, but the auxiliary task curves are
still relatively steep, MTL is more likely to work. In other words,
multi-task gains are more likely for target tasks that quickly plateau with
non-plateauing auxiliary tasks. We speculate the reason for this is that
multi-task learning can help target tasks that get stuck early in local
minima, especially if the auxiliary task does not always get stuck fast.

Other features that are predictive include the number of labels in
the main task, as well as the label entropy of the auxiliary task. The
latter supports the hypothesis put forward by Martínez Alonso and
Plank (2017) (see Related work). Note, however, that this may be a
side effect of tasks with more uniform label distributions being eas-
ier to learn. The out-of-vocabulary rate for the target task also was
predictive, which makes sense as the embedding parameters are also
updated when learning from the auxiliary data.

Less predictive features include Jensen-Shannon divergences, which
is surprising, since multi-task learning is often treated as a transfer
learning algorithm (Søgaard and Goldberg, 2016). It is also surprising
to see that size differences between the datasets are not very predic-
tive.
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Feature Task Coefficient

Curve grad. (30%) Main -1.566

Curve grad. (20%) Main -1.164

Curve param. c Main 1.007

# Labels Main 0.828

Label Entropy Aux 0.798

Curve grad. (30%) Aux 0.791

Curve grad. (50%) Main 0.781

OOV rate Main 0.697

OOV rate Main/Aux 0.678

Curve grad. (20%) Aux 0.575

Fr. norm Main -0.516

# Labels Main/Aux 0.504

Curve grad. (70%) Main 0.434

Label entropy Main/Aux -0.411

Fr. norm Aux 0.346

Tokens/types Main -0.297

Curve param. a Aux -0.297

Curve grad. (70%) Aux -0.279

Curve grad. (10%) Aux 0.267

Tokens/types Aux 0.254

Curve param. a Main/Aux -0.241

Size Aux 0.237

Fr. norm Main/Aux -0.233

JSD Aux -0.207

# Labels Aux -0.184

Curve param. c Aux -0.174

Tokens/types Main/Aux -0.117

Curve param. c Main/Aux -0.104

Curve grad. (20%) Main/Aux 0.104

Label entropy Main -0.102

Curve grad. (50%) Aux -0.099

Curve grad. (50%) Main/Aux 0.076

OOV rate Aux 0.061

Curve grad. (30%) Main/Aux -0.060

Size Main -0.032

Curve param. a Main 0.027

Curve grad. (10%) Main/Aux 0.023

JSD Main 0.019

JSD Main/Aux -0.015

Curve grad. (10%) Main 6 · 10−2

Size Main/Aux −6 · 10−3

Curve grad. (70%) Main/Aux −4 · 10−4

Table 7.4: Predictors of MTL benefit by logistic regression model coefficient
(absolute value).
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7.5 conclusion and future work

We present the first systematic study of when MTL works in the
context of common NLP tasks, when single task parameter settings
are also applied for multi-task learning. Key findings include that
MTL gains are predictable from dataset characteristics and features
extracted from the single-task inductions. We also show that the most
predictive features relate to the single-task learning curves, suggest-
ing that MTL, when successful, often helps target tasks out of local
minima. We also observed that label entropy in the auxiliary task
was also a good predictor, lending some support to the hypothesis in
Martínez Alonso and Plank (2017); but there was little evidence that
dataset balance is a reliable predictor, unlike what previous work has
suggested.

In future work, we aim to extend our experiments to a setting
where we optimize hyperparameters for the single- and multi-task
models individually, which will give us a more reliable picture of
the effect to be expected from multi-task learning in the wild. Gener-
ally, further conclusions could be drawn from settings where the joint
models do not treat the two tasks as equals, but instead give more im-
portance to the main task, for instance through a non-uniform draw-
ing of the task considered at each training iteration, or through an
adaptation of the learning rates. We are also interested in extending
this work to additional NLP tasks, including tasks that go beyond se-
quence labeling such as language modeling or sequence-to-sequence
problems.
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I D E N T I F I C AT I O N W I T H M U LT I TA S K L E A R N I N G

abstract

We approach the 2018 Shared Task on Complex Word Identification
by leveraging a cross-lingual multitask learning approach. Our me-
thod is highly language agnostic, as evidenced by the ability of our
system to generalize across languages, including languages for which
we have no training data. In the shared task, this is the case for French,
for which our system achieves the best performance. We further pro-
vide a qualitative and quantitative analysis of which words pose prob-
lems for our system.

8.1 introduction

Complex word identification (CWI) is the task of predicting whether
a certain word might be difficult for a reader to understand and is typ-
ically used as a first step in (lexical) simplification pipelines (Shard-
low, 2014b; Paetzold and Specia, 2015, 2016b). This task has received
significant attention from the community over the past few years,
leading to two shared tasks and several other publications (Shardlow,
2013a,b).

This paper presents our submission to the CWI 2018 shared task
(Yimam et al., 2018), at the 13th Workshop on Innovative Use of NLP
for Building Educational Applications. This task includes tracks tar-
geting four languages: English, Spanish, German and French. For
each of these languages, the task involves prediction of binary la-
bels of whether any of a range of annotators deemed some word or
phrase complex, or prediction of the ratio of those who did. The task
further differs from previous approaches to CWI in extending the
definition of the target units from the word level to multi-word ex-
pressions, such that annotations in the training and test set spanned
wider stretches of text than single tokens.

Another difference from previous approaches to CWI is that the
data is annotated by a mixture of native and non-native speakers,
posing an interesting challenge to reconcile the potentially different
complexity assessments of these groups.

One challenge in the CWI 2018 shared task is the fact that one of the
languages under consideration (French) does not have any training
data available. We approach this problem by exploring a combination
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of multitask learning and cross-lingual learning. In doing so, we aim
to answer the following research questions:

RQ 1 How can multitask learning be applied to the task of cross-
lingual CWI?

RQ 2 How can complex words be identified in languages which are
not seen during training time?

Our contributions also include a thorough qualitative and quantita-
tive error analysis, which shows that long and infrequent words are
very likely to be complex, but that non-complex words that display
these properties pose a challenge to our system.

8.2 related work

8.2.1 Multitask Learning

Multitask learning (MTL) is the combined learning of several tasks in
a single model (Caruana, 1997). This can be beneficial in a number of
scenarios. Previous work has shown benefits, e.g., in cases where one
has tasks which are closely related to one another (Bjerva, 2017a,b),
when one task can help another escape a local minimum (Bingel and
Søgaard, 2017), and when one has access to some unsupervised signal
which can be beneficial to the task at hand (Rei, 2017). A common ap-
proach to MTL is the application of hard parameter sharing, in which
some set of parameters in a model is shared between several tasks.
We contribute to previous work in MTL by using a hard parameter
sharing approach in which we share intermediate layers between lan-
guages, and use one output-layer per language, thus in a sense seeing
languages as tasks, similarly to Bjerva (2017a).

8.2.2 Cross-lingual learning

Cross-lingual learning is the problem of training a model on a given
language, and applying it to another (unseen) language. One com-
mon approach is to apply cross-lingual word representations, though
this has the disadvantage that it tends to place relatively high de-
mands on availability of parallel text. Another frequently used ap-
proach in this context is to use machine translation (MT) so as to
obtain a monolingual training set (Tiedemann et al., 2014). However,
this approach necessarily increases the complexity of a system, as a
fully-fledged MT system needs to be incorporated in the pipeline. Fur-
thermore, this approach bypasses the problem of attempting to find
methods or feature sets which can be successful across languages.
We therefore follow previous work by, e.g. Bjerva and Östling (2017)
in that we use hard parameter sharing with language-agnostic input
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representations. We build upon this by leveraging language-specific
resources which are widely available, such as Wikipedia dumps, and
WordNet (see Section 8.5.

8.2.3 CWI

Automatic complex word identification has a relatively short history
as a research task, with first publications including Shardlow (2013a,b)

A noticeable commonality of the highest-scoring systems in the
CWI 2016 shared task was the use of ensemble methods, most notably
random forest classifiers, which drew on a range of morphologic, se-
mantic and psycholinguistic features, among others (Paetzold and
Specia, 2016c; Ronzano et al., 2016).

Yimam et al. (2017) present first work on CWI that considers lan-
guages other than English. They release a German and a Spanish
dataset and present first CWI results for these languages. Notably,
they also describe first cross-lingual experiments, in which they train
on some language and test on another, i.e. without employing any
of the common strategies for cross-lingual learning that we outline
above.

Recently, Bingel et al. (2018b) showed promising results in predict-
ing complex words from gaze patterns of Danish children with read-
ing difficulties, which opens up possibilities for personalized complex
word identification, but it is less certain how well their method gen-
eralizes to other languages or demographics.

8.3 data

We use the data made available through the shared task (Yimam et
al., 2018). Each training instance consists of a sentence, with a marked
complex phrase annotation, including the numbers of native and non-
native annotators, and the fraction of these who found the phrase to
be complex. An overview of the data is given in Table 8.1. The number
of entries which are considered complex is quite skewed, and differs
per language as French has substantially fewer complex phrases than
English. This is further illustrated in Figure 8.1.

In addition to the shared task data, we also use external resources
in our feature representations (see Section 8.5).

8.4 model

As outlined in Section 8.2, earlier work has shown the aptitude of
ensemble methods for CWI, especially such ensembles that feature
random forests. We further choose to address the problem in a cross-
lingual fashion, for which we deem multitask learning models partic-
ularly suitable.
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Language Training Dev Test Complex

English 27,299 3,328 4,252 42.03%

Spanish 13,750 1,622 2,233 40.61%

German 6,151 795 959 39.21%

French – – 2,251 29.18%

Table 8.1: Data overview. The share of complex words is computed across
all data splits.
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Figure 8.1: Histogram of numbers sentences (y-axis) which N annotators (x-
axis) found to be complex.

Motivated by these observations, we devise an ensemble that com-
prises a number of random forests as well as feed-forward neural net-
works with hard parameter sharing. The random forests each consist
of 100 trees that create splits based on Gini impurity (Breiman, 2001).
They do not implement any form of explicit cross-lingual transfer
other than the reliance on language-agnostic features, such that we
simply train them on a single language at a time, or on shuffled con-
catenations of training data for several languages. We use random
forest classifiers for the binary task and random-forest regressors for
the probabilistic task. Note that our random forests are single-task
models, where we cannot define shared or language-specific subparts.
Instead, these are always trained on data for the single test language.

The neural MTL models, in contrast, explicitly define parts pertain-
ing to specific languages. Concretely, for each language l, we define
a function from a language-specific input layer to a hidden represen-
tation h0 that we share between languages:
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h0 = tanh(x(l)W(l)
in + b

(l)
in ) (8.1)

Here and in the following equations, W(·) and b(·) consistently de-

note weight matrices and bias vectors, respectively. W(l)
in and b(l)in are

the weights and bias terms specific to input layer l, and the input x(l)

is a vector representation of the features introduced in Sec. 8.5.
We then compute deeper hidden representations, such that the hid-

den layer at depth d is defined as follows:

hd = tanh(hd−1Wd + bd) (8.2)

Finally, each language l defines its own output y(l). This output is de-
fined slightly differently for the regression and classification models.

y
(l)
reg = hDW

(l)
out + b

(l)
out (8.3)

For the former, this is simply a linear transformation of the deepest
hidden layer D. The classification model adds a sigmoid activation to
this:

y
(l)
clf = σ(hDW

(l)
out + b

(l)
out) (8.4)

8.4.1 MTL training

Since our multitask model defines several outputs, but our data is
only labeled with a single annotation layer (i.e. for a single language
or “task”), we need a training strategy that does not require true la-
bels for all tasks. The way this is normally approached is to iteratively
optimize for tasks in isolation, e.g. by deciding at random which lan-
guage we sample a batch of data from at every pass of the forward-
backward algorithm we use to train the model.

We employ the above strategy and optimize the regression model
with a mean absolute error loss function, as well as cross-entropy for
the classification model. We monitor these losses on the validation set
as an early stopping criterion.

8.4.2 Ensemble voting

The different neural and random-forest based model that we train as
devised above finally make independent predictions for new exam-
ples. For the regression models, we use the median prediction across
all systems for a given input to make the final ensemble prediction.
For the classifiers, however, we have an additional parameter t that
we optimize on a held-out development set. This is a threshold indi-
cating the fraction of classifiers that need to cast a positive vote for us
to finally accept an example as complex. All neural and random for-
est classifiers are weighted equally here, each casting a single binary
vote.
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Lang. MAE Rank ∆ (system) F1 Rank ∆ (system)

French 0.066 1 0.012 (TMU) 0.7595 1 0.013 (TMU)

German 0.075 2 -0.013 (TMU) 0.6621 5 -0.083 (TMU)

Spanish 0.079 3 -0.007 (TMU) 0.7458 5 -0.024 (TMU)

Table 8.2: Official performance figures of our method for all non-English
tracks. The ∆ (system) column indicates the difference in perfor-
mance between our system and the best system in each track ex-
cept for ours. In accordance with the shared task report, classifica-
tion performance is measured by macro F1 between the complex
and non-complex class in the official results.

8.4.3 Language identification for cross-lingual prediction

As we expect our system to be able to generate predictions for unseen
languages (for which we have no explicit output layer), we implement
a further component in our neural model that we optimize to predict
the language of some input from the set of available languages with
explicit output layers. This is an additional output layer of our model,
defined as a dense projection from the first hidden layer followed by
a sigmoid.

l = σ(h0Wlid + blid) (8.5)

During training, we then supply a ground truth language identifier l̂
as a second target variable and perform optimization under a cross-
entropy loss that we add to the CWI loss. At test time, for a language
without an explicit output layer, we first predict the most similar lan-
guage we saw during training using Eq. 8.5 and then use the output
layer for that language to generate CWI predictions. An alternative to
this could be to generate predictions from all CWI output layers and
ensemble these, possibly weighted, with weights inferred in a similar
fashion to language identification.

For the random forest models, which do not define language-speci-
fic output functions, we simply concatenate training data from all
available languages, leveraging the fact that our feature space is lan-
guage-independent.

8.5 features

Our systems build on the same set of features for all input languages,
although some of these are computed from language-specific resour-
ces. This means that the distributions of values attained for certain
features may differ between languages, which is the motivation for
language-specific input layers in our model. We further reduce lan-
guage idiosyncrasies by normalizing all features to the [0, 1] range.
The features are listed below.



8.5 features 109

log-probability We compute unigram frequencies for candidate
words as their log-probabilities in language-specific Wikipedia dumps.
For multi-word targets, we use the sum of the log-probabilities of
the individual items. Log-probabilities are computed using KenLM
(Heafield, 2011).

character perplexity Based on the same Wikipedia dumps as
above, we compute character perplexities over the candidate strings
using a smoothed 5-gram character-based language model (again us-
ing KenLM).

number of synsets As a measure of a target’s semantic ambigu-
ity, we count the number of synsets that include it. For this, we rely
on the language-specific WordNet resources for English (Fellbaum,
1998), Spanish (Gonzalez-Agirre et al., 2012) and French (Sagot and
Fišer, 2008). For German, access to GermaNet (Hamp and Feldweg,
1997) was harder to obtain, and we instead automatically translate
words from German to English and use the English WordNet.38 In
case of a multi-word target, we take the mean number of synsets
across the individual words.

hypernym chain As a measure of semantic specificity, we fur-
ther consider the length of the hypernym chain of an item, i.e. the
number of hypernyms that can recursively be obtained for a word.
These are also obtained using WordNet, and again we average over
individual words in a target.

inflectional complexity As a proxy for inflectional complex-
ity (i.e. the number of suffixes appended to a word stem), we mea-
sure the difference in length (character count) between the surface
form and the stem of a word. For this, we use language-specific in-
stances of the Snowball stemmer (Porter, 2001) as implemented in
NLTK (Bird and Loper, 2004).

surface features As basic surface features, we include the length
of an item (in characters) and whether it is all-lowercase.

bag-of-pos For each tag defined in the Universal Part-of-Speech
project (Petrov et al., 2011), we count the number of words in a can-
didate that belong to the respective class. We obtain POS tags from
spacy.39

target-sentence similarity Motivated by the conjecture that
words or phrases are easier to understand if they display higher se-

38 For the translations, we used a bilingual dictionary (https://www.dict.cc/).
39 https://spacy.io/

https://www.dict.cc/
https://spacy.io/
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mantic similarity with their context, we compute the cosine distances
between averaged word embeddings for the target word or phrase
and the rest of the containing sentence. To mitigate out-of-vocabulary
problems, we use pretrained subword embeddings that we retrieve
from the BPEemb project (Heinzerling and Strube, 2017).

The data provided for the shared task further includes information
on how many of the annotators are native and non-native speak-
ers. While this information is potentially helpful (assuming that non-
native speakers would have a stronger bias for annotating as com-
plex), we do not make use of it, considering that access to such infor-
mation cannot be assumed in a real-world scenario.

8.6 results

We present an overview of the results that our method (as well as
our best contender) achieved in Table 8.2 and discuss results for the
individual languages below.40

8.6.1 French

Due to the lack of training data for this track, it poses a challeng-
ing test for the ability of our models to generalize across languages.
While the exact performance figures are at least partly subject to id-
iosyncrasies in the text samples and annotators, the results obtained
here are a good benchmark of of what we can achieve for languages
for which we do not even have validation data to monitor develop-
ment loss for early stopping.

As Table 8.2 shows, we achieve the best results of all participat-
ing teams for French, both for the classification and for the regres-
sion track. We view this as evidence that our cross-lingual MTL ap-
proach is an effective means to share knowledge between different
data sources and even different languages.

8.6.2 German/Spanish

Our results for Spanish and German show that, while we did not
achieve the best results compared to other participants, our method
still performs competitively. Especially for the regression track, while
not ranking first, the absolute performance figures place us very close
to the winning systems. We see this as a validation of our approach,
in particular under the consideration that a gradual assessment of
complexity is perhaps more meaningful than a binary one, especially

40 We did not submit solutions for the English track.
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(a) Length in characters per error type (b) Log-probability per error type

Figure 8.2: Statistics of character length and language model log-probability
for the French test set. The darker-shaded boxes are complex
words that we predicted correctly (TP) and incorrectly (FN), re-
spectively. The lighter-shaded boxes are non-complex words, pre-
dicted correctly (TN) and incorrectly (FP).

Figure 8.3: Distributions of false negative predictions per complexity degree
as measured by the fraction of annotators that labeled items as
complex in the French, German and Spanish test sets (left to
right).

when the definition of the latter makes no distinction between one or
all out of 20 annotators judging an item as difficult.

8.6.3 Analysis

qualitative error analysis Table 8.3 exemplifies some of the
correct and incorrect predictions that our system makes for the French
test data. We observe that the system picks up on the relatively long
targets listed as true positives. Note also that the false positives are
relatively long words, which suggests that the system is deceived by
this. The targets listed as false negatives are shorter, but they are ex-
amples of a (potentially unknown) named entity and a relatively tech-
nical term, which might pose difficulties to some readers. The words
listed as true negatives are correctly predicted by our system as non-
complex, possibly because of their shortness.
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True positives

Il marque néanmoins sa désapprobation en voyant des Juifs prier
devant le mur des Lamentations; Einstein commente qu’il s’agit de
personnes collées au passé et faisant abstraction du présent.

Rimbaud a donné ses lettres de noblesse à un type de poème en
prose distinct d’expériences plus prosaïques du type du “Spleen
de Paris" de Baudelaire.

False negatives

Le pays des vallées d’Andorre entre la France et l’Espagne, sur
le versant sud des Pyrénées, est constitué par deux vallées princi-
pales: celle du Valira del Orient et celle du Valira del Nord dont les
eaux réunies forment le Valira.

Autres cultures permanentes, la lavande et le lavandin occu-
pent plusieurs milliers d’hectares et fournissent plusieurs milliers
d’emplois directs.

True negatives

Beaucoup d’îles des Caraïbes (les Antilles) – par exemple, les
Grandes Antilles et les Petites Antilles – sont situées au-dessus
de la plaque caraïbe, une plaque tectonique avec une topographie
diffuse.

Avec un fort penchant à l’hermétisme qu’il partage avec d’autres
de ses quasi contemporains (Gérard de Nerval, Stéphane Mallarmé,
sinon Paul Verlaine parfois), Rimbaud a le génie des visions saisis-
santes qui semblent défier tout ordre de description du réel.

False positives

La construction de l’Atomium fut une prouesse technique.

La proportion des musulmans, tous sunnites, est inférieure à 1%.

Table 8.3: Example wins and losses of our model for French. Target words
or phrases are marked in bold.
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quantitative error analysis Investigating the observations
from the previous section in a more quantitative fashion, Figure 8.2
presents distributions of two basic features across complex vs. non-
complex words, and correctly vs. wrongly predicted test set items
for French. For item length, we observe a clear pattern that complex
words tend to be significantly longer than non-complex ones. Further,
the longer they are, the easier it is for our model to detect them as
complex. Non-complex words that are relatively long, however, lead
to incorrect predictions from our model.

A very similar pattern can be observed for the log-probability of
complex and non-complex items. The former are assigned a much
lower probability by our language model, and particularly unlikely
words are very easy to detect as complex. In turn, non-complex words
with relatively low probability pose a challenge for our model.

false negatives per complexity degree We further analyze
the influence of the degree of complexity on our model’s ability to
detect complex words. As stated in the Introduction, an item is la-
beled as complex in the classification setting if any of the annotators
deemed it to be complex. Effectively, no distinction is made in the clas-
sification task between a “slightly complex” item that was marked as
such by just one out of ten annotators, and one that was unanimously
considered complex.

A natural assumption is that our models would more easily pick up
on highly complex words and predict false negatives mostly for items
with low complex annotation ratios. To verify this assumption, we
plot the total number of complex words in the three non-English test
sets against the false negative predictions of our model, grouped by
the ratio of annotators who marked an item as complex (Figure 8.3).
The French and Spanish test sets are somewhat inconclusive for our
question as they generally contain very few items with a complexity
ratio higher than 0.2. The German test set, however, is more balanced,
and in fact we observe that items with a complexity ratio above 0.2
are very reliably detected by our model, confirming our hypothesis.

8.7 discussion

We approached RQ 1 by using one output layer per language, and
sharing intermediate parameters. This approach was successful, at
least in part due to our language-agnostic input representations, which
allowed the model to learn similar internal representations for each
language. Separate output-layers per language, in turn, allow for the
model to make language-specific accommodations. We approached
RQ 2 by using language-agnostic feature representations, and lan-
guage-specific output layers which were chosen during test time for
unseen languages. This approach allowed our model to perform well
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on the unseen language French, and in fact outperformed our results
on other languages. This is, however, not strictly a fair comparison
as it is possible that the French test set was somehow easier than the
others.

8.8 conclusion

We tackled the 2018 Shared Task on CWI with a cross-lingual ap-
proach via multitask learning. Our system is highly language-agnostic,
as evidenced by our high performance on French, which was not seen
during training time. Our analysis confirms that word length and fre-
quency are good, cross-linguistic predictors of complexity. However,
the concrete relationships between these features and complexity may
differ between languages, which is captured by our multitask learn-
ing approach. Our approach is especially promising for the applica-
tion of CWI to unseen languages, as we do not assume access to any
target language training data. Furthermore, this could even substan-
tially facilitate the creation of new CWI datasets, using a bootstrap-
ping or active learning approach.
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D I S C U S S I O N O F T H E C O N T R I B U T I O N S

The previous chapters of this thesis have introduced work on adap-
tive and personalized text simplification. The papers mark individual
contributions to this overarching topic and address various aspects of
the central research question posed on page 10:

How can we make simplification more adaptive
and personalizable for the individual end user?

The considerations that are discussed in the introductory chapter de-
vise a modification of the simplification workflow that allows for the
integration of user preferences and feedback, such that a simplifica-
tion model can base its decisions on what it knows about a user’s
individual needs and desires. To conclude this thesis, let us begin by
reviewing how these papers contribute towards this goal and how
they consequently help answer the research question stated above.

adaptable sentence simplification

The papers in chapters 3 and 4 present approaches to sentence-level
simplification that can accommodate user preferences and have the
capacity to adapt their final output accordingly. In explicitly predict-
ing available simplification operations locally at the word or phrase
level, user preferences can be incorporated by promoting or suppress-
ing certain simplification operations altogether or in specific contexts.
A user may, for example, opt to have the system shorten sentences
longer than 15 words through phrase deletions, but not perform lexi-
cal substitution.

In the first of these two chapters, we present an approach that
learns deletions and paraphrases over dependency trees (Bingel and
Søgaard, 2016). The application of simplification operations to entire
subtrees is mainly motivated by grammaticality considerations, as-
suming that dependency subtrees correspond to syntactic units and
that failing to remove or change them in their entirety will likely
cause ungrammatical output with incomplete phrases. Another bene-
fit of our method is that it relies on training data that is several orders
of magnitude smaller than that of similar, state-of-the-art compres-
sion approaches. In a human evaluation, we find that our approach
produces better readable output sentences than previous approaches
that tackle compression and paraphrasing jointly, while being compa-
rable to state-of-the-art approaches to compression only.

The second work that addresses adaptable sentence simplification
does so by learning and predicting explicit simplification operations
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in a sentence (Alva-Manchego et al., 2017). Since such explicit op-
erations are not manually annotated in existing simplification cor-
pora, our approach heuristically infers them from word alignments
between pairs of original and simplified sentences. Human evalu-
ation demonstrates that, applying all available simplification oper-
ations, both of the above approaches produce simpler output than
strong baselines, as judged by non-native speakers of English.

personalized lexical simplification

As the second major line of work, this thesis has presented text simpli-
fication methods that learn directly from user feedback, rather than
requiring the user to explicitly turn knobs and dials to let the model
know their personal simplification needs and preferences. This is mo-
tivated, in part, by the conjecture that users do not necessarily have
a sufficient level of introspection into their own specific needs. Fur-
ther, it is impractical to devise and implement sufficiently detailed
set screws that let the user configure and express minuscule details
and features that contribute to, for instance, perceived word difficulty.
Work on self-adapting and personalizing lexical simplification is cov-
ered by chapters 5 and 6.

In chapter 5 (Bingel et al., 2018b), we investigate ways to deter-
mine word difficulty based on individual gaze patterns in children
with reading difficulties. In particular, our aim is to predict words
in context that are decoded incorrectly while reading out loud. We
demonstrate that eye-tracking data contains a strong signal for the
individual perception of word difficulty, letting us predict misread
words with high precision. Another finding is the heterogeneity of
readers, attested by the largely different results between users and
the difficulty in sharing information between them. Notably, the eye-
tracking data we use in this study comes from noisy, real-world gaze
recordings of children’s reading. This is in contrast to most scien-
tific experiments involving eye-tracking, where the data is typically
recorded in highly idealized lab settings, including identical or con-
trolled stimuli, lighting conditions, and subjects, among others. The
contributions of this study thus include the demonstration of the fit-
ness of our method despite these complicated conditions for data
collection.

Another contribution to self-adapting lexical simplification is pre-
sented in chapter 6 (Bingel et al., 2018a). Here, we motivate, devise
and implement a software that performs individual lexical simplifi-
cations in a browser, keeping separate user accounts which continu-
ously personalize as the user receives and rates simplifications from
the system. The system implements the established lexical simplifica-
tion pipeline (Shardlow, 2014b), but adapts it to accommodate user
feedback in an online learning fashion. Concretely, the substitution
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ranking step in the pipeline is implemented as a ranking problem
between two candidates at a time. A model is thus initialized from
a static corpus of binary rankings, then user feedback is integrated
by determining the preferred of two options and feeding this infor-
mation back to the online learning function. With time, the model
will learn a user’s individual simplification needs and preferences.
Besides serving as a practical application that promotes accessibility
to text, the software will enable us to perform further analyses on a
range of research questions, including the investigation of individual
reading profiles, and invariants between them or between groups of
readers, among others.

Evidence for the effectiveness of adaptive solutions to lexical sim-
plification has very recently come from the works of Yimam and Bie-
mann (2018) and Lee and Yeung (2018). These papers demonstrate
that a small number of training examples annotated by a specific in-
dividual can lead to significantly better personalized simplification
models, compared to generic solutions. In particular, Yimam and Bie-
mann investigate a scenario in which a user provides feedback over
several rounds of model adaptation, finding that even after a few
rounds the model understands the user’s individual simplification
needs much better than the base system.

multi-task learning for simplification

The two last papers included in this thesis present work on multi-task
learning, a framework that in recent years has gained increasing atten-
tion in many application areas of natural language processing. Multi-
task learning essentially lets a system learn several functions at once,
sharing information between these through joint parameters or loss
functions, for instance. This may lead to better generalization through
regularization or the induction of certain biases. Further, MTL allows
us to integrate information from several, disparate datasets at once,
which can overcome some of the challenges in simplification revolv-
ing around data scarcity.

However, the questions why and when MTL works had remained
largely unanswered for some time. Chapter 7 thus investigates the
conditions under which multi-task learning can be expected to lead to
benefits (Bingel and Søgaard, 2017). Comparing performance changes
between single-task and multi-task models across ten different se-
quence labeling tasks, we find that MTL leads to improvements in
just under half the cases. We then test a range of 42 task descriptors
for their ability to predict MTL gains, using them as features in a lo-
gistic regression model. Here, we find that the number of labels as
well as their entropy in the used dataset are good predictors of gains
from multi-task setups. Specifically, if the main task has many dif-
ferent labels (and is therefore difficult to learn), MTL gains become
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more likely. Even more clearly, we see that MTL typically leads to
gains when the main task plateaus quickly in a single-task learning
setup, suggesting that MTL can help difficult tasks escape local op-
tima.

In the context of simplification, efforts to share information be-
tween individual readers as approached in chapter 5 have so far been
largely unsuccessful. In chapter 8 (Bingel and Bjerva, 2018), however,
we tackle complex word identification in a cross-lingual setting, shar-
ing information between different languages to increase performance.
This approach also generalizes to languages for which no data was
seen at training time. In simplification research, this is an encourag-
ing finding, considering that annotated training data does not exist
for most languages. This contribution marks the first successful appli-
cation of multi-task learning to a simplification task.
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O U T L O O K

Finally, let us shed light on some of the most prominent points of de-
parture for future research that this thesis offers. The previous chap-
ter has summarized the contributions of this thesis and has grouped
them into three major lines of work. A natural next direction of re-
search will be to connect the dots between these. In particular, the
development and investigation of simplification models that are at
the same time customizable through explicit input as well as self-
personalizing from implicit feedback will be a logical continuation of
the research presented here, and would get us even closer to the aug-
mented simplification workflow devised in the introductory chapter
(see Figure 1.2).

Another line of future work relates to further evaluating the pre-
sented approaches out in the open. From the argumentation in the
first chapter, it follows that simplification systems ultimately need
to be evaluated in real-world settings on an individual basis. With
respect to applications that go beyond in-vitro lab settings, we have
already covered some ground, for example with the work presented
in chapter 5, which is based on data collected in naturalistic reading
scenarios and can be directly integrated into the software that was
used to collect the data. Additionally, chapter 6 describes a lexical
simplification system that was officially released shortly before the
completion and publication of this thesis and is freely available to the
public. The software, Lexi, enables large-scale user studies to evalu-
ate the effectiveness of the proposed online-learning method. Such
studies are a further candidate for work following this thesis.

Along similar lines, Lexi allows for user studies that can give fur-
ther insight into a potential typology of readers and reading strate-
gies. Originally, the basic assumption of heterogeneous readers with
individual reading difficulties is licensed through existing theory and
a limited body of empirical evidence. Chapter 5 adds to this body, but
a natural development of our line of work will give further support
to this hypothesis.

Lastly, text simplification models generally face a number of chal-
lenges, the most prominent of which we discuss in chapter 2. Much
work is needed in this direction, in particular to safeguard the gram-
maticality and meaning preservation of simplification output.





Part VI

A P P E N D I X





A
S U P P L E M E N TA RY M AT E R I A L F O R I N D I V I D U A L
S T U D I E S



126 supplementary material for individual studies

a.1 examples of json protocol used by lexi

a.1.1 Request sent from frontend to backend

1 {

2 ’frontend_version’: ’1.0.0’,

3 ’user’: ’lexi-user@mail.com’,

4 ’html’: ’<p>Natasja startede allerede som 13-årig med at

synge og DJ\’e ... </p>’,

5 ’startOffset’: 17,

6 ’endOffset’: 25,

7 ’url’: ’https://da.wikipedia.org/wiki/Natasja’

8 }

a.1.2 Reply from backend to frontend

1 {

2 ’backend_version’: ’1.0.0’,

3 ’html’: ’<p>Natasja startede <span id="lexi_254_1" class="

lexi-simplify">allerede</span> som 13-årig med at

synge og DJ\’e ... </p>’,

4 ’session_id’: 254,

5 ’status’: 200,

6 ’message’: ’Simplification successful’,

7 ’simplifications’: {

8 ’lexi_254_1’: {

9 ’choices’: [’allerede’, ’bare’],

10 ’selection’: 0,

11 ’sentence’: "Natasja startede allerede som 13-årig

med at synge og DJ’e i København, hvor hun gjorde

sig bemærket sammen med Miss Mukupa, McEmzee og

DJ Kruzh’em i bandet No Name Requested.",

12 ’word_index’: 2

13 }

14 }

15 }
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a.1.3 Feedback sent from frontend to backend

1 {

2 ’frontend_version’: ’1.0.0’,

3 ’user’: ’lexi-user@mail.com’,

4 ’html’: ’<p>Natasja startede <span id="lexi_254_1" class="

lexi-simplify">bare</span> som 13-årig med at synge og

DJ\’e ...

5 </p>’,

6 ’session_id’: 254,

7 ’simplifications’: {

8 ’lexi_254_1’: {

9 ’choices’: [’allerede’, ’bare’],

10 ’selection’: 1,

11 ’sentence’: "Natasja startede allerede som 13-årig med

at synge

12 og DJ’e i København, hvor hun gjorde sig bemærket

sammen med

13 Miss Mukupa, McEmzee og DJ Kruzh’em i bandet No Name

14 Requested.",

15 ’word_index’: 2

16 },

17 },

18 ’rating’: 4,

19 ’url’: ’https://da.wikipedia.org/wiki/Natasja’,

20 ’session_id’: 254

21 }
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a.2 algorithms used for training data generation in

study “how to simplify from explicit labeling of

complex-simplified text pairs”

Algorithmus 1 : Initial word-level annotation
Input : O: list with tokens of the original sentence, S: list with tokens

of the simplified sentence, A: list with word alignments.
Output : SLO: simplification labels for each token in O, SLS:

simplification labels for each token in S.
// labeling tokens in the original sentence

1 for i← 1 to len(O) do
// get the indexes of the tokens in S to which the ith

token in O is aligned to

2 IS← FindAlignments(A, i, ‘s’)
3 if len(IS) > 0 then // it is aligned

4 if len(IS) = 1 and Oi = SIS0 then
5 SLOi ← ‘C’ // keep

6 else // not an exact match

7 SLOi ← ‘R’ // replace

8 end
9 else // not aligned

10 SLOi ← ‘D’ // delete

11 end
12 end

// labeling tokens in the simplified sentence

13 for j← 1 to len(S) + 1 do
// get the indexes of the tokens in O to which the jth

token in S is aligned to

14 IO← FindAlignments(A, j, ‘o’)
15 if len(IO) > 0 then // it is aligned

16 SLSj ← ‘O’
17 if len(IO) > 1 then

// the current token in S replaces a phrase in O

18 foreach k ∈ IO do
19 SLOk ← ‘R’
20 end
21 end
22 else
23 SLSj ← ‘A’ // add

24 end
25 end
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Algorithmus 2 : Annotation of reorderings
Input : SLO: simplification labels for each token in original sentence,

SLS: simplification labels for each token in simplified
sentence, A: list with word alignments.

Output : SLO modified.
1 shift_left← 0

2 for i← 0 to len(SLO) do
3 if SLOi ∈ [‘D’, ‘R’] then
4 shift_left← shift_left+ 1
5 else
6 IS← FindAlignments(A, i, ‘s’)
7 if len(IS) > 0 then
8 k← IS0 // index of the aligned token in the

simplified sentence

9 else
10 k← i // index of the token in the original

sentence

11 end
12 shift_right← 0

13 for j← 0 to k do
14 if SLSj ∈ [‘AC’, ‘RW’] then
15 shift_right← shift_right+ 1
16 end
17 end
18 if i− shift_left+ shift_right 6= k then
19 switch SLSi do
20 case ‘C’ do SLSi ← ‘M’
21 case ‘R’ do SLSi ← ‘RM’
22 case ‘RW’ do SLSi ← ‘RWM’
23 end
24 end
25 end
26 end
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